
Axelrod Documentation
Release 0.0.1

Vincent Knight

Apr 08, 2020

Contents

1 Quick start 3

2 Table of Contents 5
2.1 Tutorials . 5

2.1.1 New to Game Theory and/or Python . 5
2.1.2 Research topics . 16
2.1.3 Further capabilities in the library . 29
2.1.4 Contributing . 50

2.2 Reference . 60
2.2.1 Background to Axelrod’s Tournament . 60
2.2.2 Play Contexts and Generic Prisoner’s Dilemma . 61
2.2.3 Tournaments . 61
2.2.4 Strategies index . 69
2.2.5 Bibliography . 132
2.2.6 Glossary . 132

2.3 Community . 134
2.3.1 Part of the team . 134
2.3.2 Communication . 135
2.3.3 Code of Conduct . 135

2.4 Citing the library . 136

3 Indices and tables 137

Bibliography 139

Python Module Index 143

Index 145

i

ii

Axelrod Documentation, Release 0.0.1

Here is quick overview of the current capabilities of the library:

• Over 100 strategies from the literature and some exciting original contributions

– Classic strategies like TiT-For-Tat, WSLS, and variants

– Zero-Determinant and other Memory-One strategies

– Many generic strategies that can be used to define an array of popular strategies, including finite state
machines, strategies that hunt for patterns in other strategies, and strategies that combine the effects of
many others

– Strategy transformers that augment the abilities of any strategy

• Head-to-Head matches

• Round Robin tournaments with a variety of options, including:

– noisy environments

– spatial tournaments

– probabilistically chosen match lengths

• Population dynamics

– The Moran process

– An ecological model

• Multi-processor support (not currently supported on Windows), caching for deterministic interactions, automat-
ically generate figures and statistics

Every strategy is categorized on a number of dimensions, including:

• Deterministic or Stochastic

• How many rounds of history used

• Whether the strategy makes use of the game matrix, the length of the match, etc.

Furthermore the library is extensively tested with 100% coverage, ensuring validity and reproducibility of results!

Contents 1

Axelrod Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Quick start

Create matches between two players:

>>> import axelrod as axl
>>> players = (axl.Alternator(), axl.TitForTat())
>>> match = axl.Match(players, 5)
>>> interactions = match.play()
>>> interactions
[(C, C), (D, C), (C, D), (D, C), (C, D)]

Build full tournaments between groups of players:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator(), axl.TitForTat())
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Alternator', 'Tit For Tat', 'Cooperator']

Study the evolutionary process using a Moran process:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator(), axl.TitForTat())
>>> mp = axl.MoranProcess(players)
>>> populations = mp.play()
>>> populations
[Counter({'Alternator': 1, 'Cooperator': 1, 'Tit For Tat': 1}),
Counter({'Alternator': 1, 'Cooperator': 1, 'Tit For Tat': 1}),
Counter({'Cooperator': 1, 'Tit For Tat': 2}),
Counter({'Cooperator': 1, 'Tit For Tat': 2}),
Counter({'Tit For Tat': 3})]

As well as this, the library has a growing collection of strategies. The Strategies index gives a description of them.

For further details there is a library of Tutorials available and a Community page with information about how to get
support and/or make contributions.

3

Axelrod Documentation, Release 0.0.1

4 Chapter 1. Quick start

CHAPTER 2

Table of Contents

2.1 Tutorials

This section contains a variety of tutorials related to the Axelrod library.

Contents:

2.1.1 New to Game Theory and/or Python

This section contains a variety of tutorials that should help get you started with the Axelrod library.

Contents:

Installation

The library requires Python 3.5.

The simplest way to install the package is to obtain it from the PyPi repository:

$ pip install axelrod

You can also build it from source if you would like to:

$ git clone https://github.com/Axelrod-Python/Axelrod.git
$ cd Axelrod
$ python setup.py install

Creating Matches

You can create your own match between two players using the Match class. This is often useful when designing new
strategies in order to study how they perform against specific opponents.

5

Axelrod Documentation, Release 0.0.1

For example, to create a 5 turn match between Cooperator and Alternator:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 5)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C)]

By default, a match will not be noisy, but you can introduce noise if you wish. Noise is the probability with which any
action dictated by a strategy will be swapped:

>>> match = axl.Match(players=players, turns=5, noise=0.2)
>>> match.play()
[(D, C), (C, D), (C, C), (C, D), (D, D)]

The result of the match is held as an attribute within the Match class. Each time play() is called, it will overwrite
the content of that attribute:

>>> match.result
[(D, C), (C, D), (C, C), (C, D), (D, D)]
>>> match.play()
[(C, C), (C, C), (C, D), (C, C), (C, C)]
>>> match.result
[(C, C), (C, C), (C, D), (C, C), (C, C)]

The result of the match can also be viewed as sparklines where cooperation is shown as a solid block and defection as
a space. Sparklines are a very concise way to view the result and can be useful for spotting patterns:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C,
→˓C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C),
→˓(C, D), (C, C), (C, D), (C, C)]
>>> print(match.sparklines())

The character for cooperation and a space for defection are default values but you can use any characters you like:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C,
→˓C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C),
→˓(C, D), (C, C), (C, D), (C, C)]
>>> print(match.sparklines(c_symbol='|', d_symbol='-'))
|||||||||||||||||||||||||
|-|-|-|-|-|-|-|-|-|-|-|-|

A Match class can also score the individual turns of a match. Just call match.scores() after play:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()

(continues on next page)

6 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C,
→˓C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C),
→˓(C, D), (C, C), (C, D), (C, C)]
>>> match.scores()
[(3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3,
→˓3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3),
→˓(0, 5), (3, 3), (0, 5), (3, 3)]

There are various further methods:

>>> match.final_score()
(39, 99)
>>> match.final_score_per_turn()
(1.56, 3.96)
>>> match.winner()
Alternator
>>> match.cooperation() # The count of cooperations
(25, 13)
>>> match.normalised_cooperation() # The count of cooperations per turn
(1.0, 0.52)

Creating and running a simple tournament

The following lines of code creates a list players playing simple strategies:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> players
[Cooperator, Defector, Tit For Tat, Grudger]

We can now create a tournament, play it, save the results and view the rank of each player:

>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']

We can also plot these results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

Note that in this case none of our strategies are stochastic so the boxplot shows that there is no variation. Take a look
at the Visualising results section to see plots showing a stochastic effect.

Summarising tournament results

As shown in Creating and running a simple tournament let us create a tournament:

2.1. Tutorials 7

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, turns=10, repetitions=3)
>>> results = tournament.play()

The results set can return a list of named tuples, ordered by strategy rank that summarises the results of the tournament:

>>> summary = results.summarise()
>>> import pprint
>>> pprint.pprint(summary)
[Player(Rank=0, Name='Defector', Median_score=2.6..., Cooperation_rating=0.0, Wins=3.
→˓0, Initial_C_rate=0.0, CC_rate=...),
Player(Rank=1, Name='Tit For Tat', Median_score=2.3..., Cooperation_rating=0...,
→˓Wins=0.0, Initial_C_rate=1.0, CC_rate=...),
Player(Rank=2, Name='Grudger', Median_score=2.3..., Cooperation_rating=0..., Wins=0.
→˓0, Initial_C_rate=1.0, CC_rate=...),
Player(Rank=3, Name='Cooperator', Median_score=2.0..., Cooperation_rating=1.0,
→˓Wins=0.0, Initial_C_rate=1.0, CC_rate=...)]

It is also possible to write this data directly to a csv file using the write_summary method:

>>> results.write_summary('summary.csv')
>>> import csv
>>> with open('summary.csv', 'r') as outfile:
... csvreader = csv.reader(outfile)
... for row in csvreader:
... print(row)
['Rank', 'Name', 'Median_score', 'Cooperation_rating', 'Wins', 'Initial_C_rate', 'CC_
→˓rate', 'CD_rate', 'DC_rate', 'DD_rate', 'CC_to_C_rate', 'CD_to_C_rate', 'DC_to_C_
→˓rate', 'DD_to_C_rate']
['0', 'Defector', '2.6...', '0.0', '3.0', '0.0', '0.0', '0.0', '0.4...', '0.6...', '0
→˓', '0', '0', '0']
['1', 'Tit For Tat', '2.3...', '0.7', '0.0', '1.0', '0.66...', '0.03...', '0.0', '0.3.
→˓..', '1.0', '0', '0', '0']
['2', 'Grudger', '2.3...', '0.7', '0.0', '1.0', '0.66...', '0.03...', '0.0', '0.3...',
→˓ '1.0', '0', '0', '0']
['3', 'Cooperator', '2.0...', '1.0', '0.0', '1.0', '0.66...', '0.33...', '0.0', '0.0',
→˓ '1.0', '1.0', '0', '0']

The result set class computes a large number of detailed outcomes read about those in Accessing tournament results.

Visualising results

This tutorial will show you briefly how to visualise some basic results

Visualising the results of the tournament

As shown in Creating and running a simple tournament, let us create a tournament, but this time we will include a
player that acts randomly:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> players.append(axl.Random())

(continues on next page)

8 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

>>> tournament = axl.Tournament(players)
>>> results = tournament.play()

We can view these results (which helps visualise the stochastic effects):

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

Visualising the distributions of wins

We can view the distributions of wins for each strategy:

>>> p = plot.winplot()
>>> p.show()

Visualising the payoff matrix

We can also easily view the payoff matrix described in Accessing tournament results, this becomes particularly useful
when viewing the outputs of tournaments with a large number of strategies:

>>> p = plot.payoff()
>>> p.show()

Saving all plots

The axelrod.Plot class has a method: save_all_plots that will save all the above plots to file.

Passing various objects to plot

The library give access to underlying matplotlib axes objects of each plot, thus the user can easily modify various
aspects of a plot:

>>> import matplotlib.pyplot as plt
>>> _, ax = plt.subplots()
>>> title = ax.set_title('Payoff')
>>> xlabel = ax.set_xlabel('Strategies')
>>> p = plot.boxplot(ax=ax)
>>> p.show()

2.1. Tutorials 9

Axelrod Documentation, Release 0.0.1

Moran Process

The strategies in the library can be pitted against one another in the Moran process, a population process simulating
natural selection.

The process works as follows. Given an initial population of players, the population is iterated in rounds consisting of:

• matches played between each pair of players, with the cumulative total scores recorded

• a player is chosen to reproduce proportional to the player’s score in the round

• a player is chosen at random to be replaced

The process proceeds in rounds until the population consists of a single player type. That type is declared the winner.
To run an instance of the process with the library, proceed as follows:

>>> import axelrod as axl
>>> axl.seed(0) # for reproducible example
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> mp = axl.MoranProcess(players)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Defector'

You can access some attributes of the process, such as the number of rounds:

>>> len(mp)
16

The sequence of populations:

>>> import pprint
>>> pprint.pprint(populations)
[Counter({'Defector': 1, 'Tit For Tat': 1, 'Grudger': 1, 'Cooperator': 1}),
Counter({'Defector': 1, 'Tit For Tat': 1, 'Grudger': 1, 'Cooperator': 1}),
Counter({'Cooperator': 2, 'Defector': 1, 'Tit For Tat': 1}),
Counter({'Defector': 2, 'Cooperator': 2}),
Counter({'Cooperator': 3, 'Defector': 1}),
Counter({'Cooperator': 3, 'Defector': 1}),
Counter({'Defector': 2, 'Cooperator': 2}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),

(continues on next page)

10 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Moran_process

Axelrod Documentation, Release 0.0.1

(continued from previous page)

Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 3, 'Cooperator': 1}),
Counter({'Defector': 4})]

The scores in each round:

>>> for row in mp.score_history:
... print([round(element, 1) for element in row])
[6.0, 7.0, 7.0, 7.0]
[6.0, 7.0, 7.0, 7.0]
[6.0, 11.0, 7.0, 6.0]
[3.0, 11.0, 11.0, 3.0]
[6.0, 15.0, 6.0, 6.0]
[6.0, 15.0, 6.0, 6.0]
[3.0, 11.0, 11.0, 3.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]
[7.0, 7.0, 7.0, 0.0]

We can plot the results of a Moran process with mp.populations_plot(). Let’s use a larger population to get a bit more
data:

>>> import random
>>> import matplotlib.pyplot as plt
>>> axl.seed(15) # for reproducible example
>>> players = [axl.Defector(), axl.Defector(), axl.Defector(),
... axl.Cooperator(), axl.Cooperator(), axl.Cooperator(),
... axl.TitForTat(), axl.TitForTat(), axl.TitForTat(),
... axl.Random()]
>>> mp = axl.MoranProcess(players=players, turns=200)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Cooperator'
>>> ax = mp.populations_plot()
>>> plt.show()

Moran Process with Mutation

The MoranProcess class also accepts an argument for a mutation rate. Nonzero mutation changes the Markov
process so that it no longer has absorbing states, and will iterate forever. To prevent this, iterate with a loop (or
function like takewhile from itertools):

>>> import axelrod as axl
>>> axl.seed(4) # for reproducible example
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> mp = axl.MoranProcess(players, mutation_rate=0.1)
>>> for _ in mp:

(continues on next page)

2.1. Tutorials 11

Axelrod Documentation, Release 0.0.1

(continued from previous page)

... if len(mp.population_distribution()) == 1:

... break
>>> mp.population_distribution()
Counter({'Grudger': 4})

It is possible to pass a fitness function that scales the utility values. A common one used in the literature,
[Ohtsuki2006], is 𝑓(𝑠) = 1− 𝑤 + 𝑤𝑠 where 𝑤 denotes the intensity of selection:

>>> axl.seed(689)
>>> players = (axl.Cooperator(), axl.Defector(), axl.Defector(), axl.Defector())
>>> w = 0.95
>>> fitness_transformation = lambda score: 1 - w + w * score
>>> mp = axl.MoranProcess(players, turns=10, fitness_transformation=fitness_
→˓transformation)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Cooperator'

Other types of implemented Moran processes:

• Moran Process on Graphs

• Approximate Moran Process

Human Interaction

It is possible to play interactively using the Human strategy:

>>> import axelrod as axl
>>> me = axl.Human(name='me')
>>> players = [axl.TitForTat(), me]
>>> match = axl.Match(players, turns=3)
>>> match.play()

You will be prompted for the action to play at each turn:

Starting new match
Turn 1 action [C or D] for me: C

Turn 1: me played C, opponent played C
Turn 2 action [C or D] for me: D

Turn 2: me played D, opponent played C
Turn 3 action [C or D] for me: C
[(C, C), (C, D), (D, C)]

after this, the match object can be manipulated as described in Creating Matches

Running Axelrod’s First Tournament

This tutorial will bring together topics from the previous tutorials to reproduce Axelrod’s original tournament from
[Axelrod1980].

12 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Selecting our players

We will use the players from Axelrod’s first tournament which are contained in the axelrod.axelrod_first_strategies
list:

>>> import axelrod as axl
>>> first_tournament_participants_ordered_by_reported_rank = [s() for s in axl.
→˓axelrod_first_strategies]
>>> number_of_strategies = len(first_tournament_participants_ordered_by_reported_rank)
>>> for player in first_tournament_participants_ordered_by_reported_rank:
... print(player)
Tit For Tat
First by Tideman and Chieruzzi: (D, D)
First by Nydegger
First by Grofman
First by Shubik
First by Stein and Rapoport: 0.05: (D, D)
Grudger
First by Davis: 10
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Joss: 0.9
First by Tullock
First by Anonymous
Random: 0.5

Creating the tournament

Now we create and run the tournament, we will set a seed to ensure reproducibility and 50 repetitions to smooth the
random effects. We use 5 repetitions as this is what was done in [Axelrod1980]:

>>> axl.seed(0)
>>> tournament = axl.Tournament(
... players=first_tournament_participants_ordered_by_reported_rank,
... turns=200,
... repetitions=5
...)
>>> results = tournament.play()

Viewing the ranks of the participants

The results object contains the ranked names:

>>> for name in results.ranked_names:
... print(name)
First by Stein and Rapoport: 0.05: (D, D)
First by Grofman
First by Shubik
Tit For Tat
First by Tideman and Chieruzzi: (D, D)
First by Nydegger
First by Davis: 10
Grudger

(continues on next page)

2.1. Tutorials 13

Axelrod Documentation, Release 0.0.1

(continued from previous page)

First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Joss: 0.9
First by Tullock
Random: 0.5
First by Anonymous

We see that TitForTat does not in fact win this tournament. We can plot the reported rank (from [Axelrod1980]) versus
the reproduced one:

>>> import matplotlib.pyplot as plt
>>> plt.figure(figsize=(15, 6))
>>> plt.plot((0, 15), (0, 15), color="grey", linestyle="--")
>>> for original_rank, strategy in enumerate(first_tournament_participants_ordered_by_
→˓reported_rank):
... rank = results.ranked_names.index(str(strategy))
... if rank == original_rank:
... symbol = "+"
... plt.plot((rank, rank), (rank, 0), color="grey")
... else:
... symbol = "o"
... plt.scatter([rank], [original_rank], marker=symbol, color="black", s=50)
>>> plt.xticks(
... range(number_of_strategies),
... results.ranked_names,
... rotation=90
...)
>>> plt.ylabel("Reported rank")
>>> plt.xlabel("Reproduced rank");
>>> plt.show()

Visualising the scores

We see that the first 6 strategies do not match the ranks of the original paper, we can take a look the variation in the
scores:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

The first 6 strategies have similar scores which could indicate that the original work by Axelrod was not run with
sufficient repetitions. Another explanation is that all the strategies are implemented from the descriptions given in
[Axelrod1980] and there is no source code to base this on. This leads to some strategies being ambigious. These are
all clearly explained in the strategy docstrings. For example:

>>> print(axl.FirstByAnonymous.__doc__)

Submitted to Axelrod's first tournament by a graduate student whose name was
withheld.

(continues on next page)

14 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

The description written in [Axelrod1980]_ is:

> "This rule has a probability of cooperating, P, which is initially 30% and
> is updated every 10 moves. P is adjusted if the other player seems random,
> very cooperative, or very uncooperative. P is also adjusted after move 130
> if the rule has a lower score than the other player. Unfortunately, the
> complex process of adjustment frequently left the probability of cooperation
> in the 30% to 70% range, and therefore the rule appeared random to many
> other players."

Given the lack of detail this strategy is implemented based on the final
sentence of the description which is to have a cooperation probability that
is uniformly random in the 30 to 70% range.

Names:

- (Name withheld): [Axelrod1980]_

Other outcomes

If we run the tournament with other seeds, the results are different. For example, with 130 Tit For Tat wins:

>>> axl.seed(130)
>>> tournament = axl.Tournament(
... players=first_tournament_participants_ordered_by_reported_rank,
... turns=200,
... repetitions=5
...)
>>> results = tournament.play()
>>> for name in results.ranked_names:
... print(name)
Tit For Tat
First by Stein and Rapoport: 0.05: (D, D)
First by Grofman
First by Shubik
First by Nydegger
First by Tideman and Chieruzzi: (D, D)
First by Davis: 10
Grudger
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Joss: 0.9
First by Tullock
Random: 0.5
First by Anonymous

With 1238 the strategy submitted by Shubik wins:

>>> axl.seed(1238)
>>> tournament = axl.Tournament(
... players=first_tournament_participants_ordered_by_reported_rank,
... turns=200,
... repetitions=5
...)

(continues on next page)

2.1. Tutorials 15

Axelrod Documentation, Release 0.0.1

(continued from previous page)

>>> results = tournament.play()
>>> for name in results.ranked_names:
... print(name)
First by Shubik
First by Stein and Rapoport: 0.05: (D, D)
First by Grofman
Tit For Tat
First by Nydegger
First by Tideman and Chieruzzi: (D, D)
Grudger
First by Davis: 10
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Tullock
First by Joss: 0.9
First by Anonymous
Random: 0.5

2.1.2 Research topics

This section contains descriptions of particular tools of interest to those doing game theoretic research.

Contents:

Noisy tournaments

A common variation on iterated prisoner’s dilemma tournaments is to add stochasticity in the choice of actions, simply
called noise. This noise is introduced by flipping plays between C and D with some probability that is applied to all
plays after they are delivered by the player [Bendor1993].

The presence of this persistent background noise causes some strategies to behave substantially differently. For ex-
ample, TitForTat can fall into defection loops with itself when there is noise. While TitForTat would usually
cooperate well with itself:

C C C C C ...
C C C C C ...

Noise can cause a C to flip to a D (or vice versa), disrupting the cooperative chain:

C C C D C D C D D D ...
C C C C D C D D D D ...

To create a noisy tournament you simply need to add the noise argument:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> noise = 0.1
>>> tournament = axl.Tournament(players, noise=noise)
>>> results = tournament.play()
>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

16 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Here is how the distribution of wins now looks:

>>> p = plot.winplot()
>>> p.show()

Probabilistic Ending Tournaments

It is possible to create a tournament where the length of each Match is not constant for all encounters: after each turn
the Match ends with a given probability, [Axelrod1980b]:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, prob_end=0.5)

We can view the results in a similar way as described in Accessing tournament results:

>>> results = tournament.play()
>>> m = results.payoff_matrix
>>> for row in m:
... print([round(ele, 1) for ele in row]) # Rounding output

[3.0, 0.0, 3.0, 3.0]
[5.0, 1.0, 3.7, 3.6]
[3.0, 0.3, 3.0, 3.0]
[3.0, 0.4, 3.0, 3.0]

We see that Cooperator always scores 0 against Defector but other scores seem variable as they are effected by
the length of each match.

We can (as before) obtain the ranks for our players:

>>> results.ranked_names
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']

We can plot the results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

We can also view the length of the matches played by each player. The plot shows that the length of each match (for
each player) is not the same. The median length is 4 which is the expected value with the probability of a match ending
being 0.5.

>>> p = plot.lengthplot()
>>> p.show()

2.1. Tutorials 17

Axelrod Documentation, Release 0.0.1

Spatial tournaments

A spatial tournament is defined on a graph where the nodes correspond to players and edges define whether or not a
given player pair will have a match.

The initial work on spatial tournaments was done by Nowak and May in a 1992 paper: [Nowak1992].

Additionally, Szabó and Fáth in their 2007 paper [Szabo2007] consider a variety of graphs, such as lattices, small
world, scale-free graphs and evolving networks.

Let’s create a tournament where Cooperator and Defector do not play each other and neither do TitForTat
and Grudger :

Note that the edges have to be given as a list of tuples of player indices:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> edges = [(0, 2), (0, 3), (1, 2), (1, 3)]

To create a spatial tournament you pass the edges to the Tournament class:

>>> spatial_tournament = axl.Tournament(players, edges=edges)
>>> results = spatial_tournament.play()

We can plot the results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()

We can, like any other tournament, obtain the ranks for our players:

18 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> results.ranked_names
['Cooperator', 'Tit For Tat', 'Grudger', 'Defector']

Let’s run a small tournament of 2 turns and 2 repetitions and obtain the interactions:

>>> spatial_tournament = axl.Tournament(players ,turns=2, repetitions=2, edges=edges)
>>> results = spatial_tournament.play()
>>> results.payoffs
[[[], [], [3.0, 3.0], [3.0, 3.0]], [[], [], [3.0, 3.0], [3.0, 3.0]], [[3.0, 3.0], [0.
→˓5, 0.5], [], []], [[3.0, 3.0], [0.5, 0.5], [], []]]

As anticipated not all players interact with each other.

It is also possible to create a probabilistic ending spatial tournament:

>>> prob_end_spatial_tournament = axl.Tournament(players, edges=edges, prob_end=.1,
→˓repetitions=1)
>>> axl.seed(0)
>>> prob_end_results = prob_end_spatial_tournament.play()

We see that the match lengths are no longer all equal:

>>> prob_end_results.match_lengths
[[[0, 0, 18.0, 14.0], [0, 0, 6.0, 3.0], [18.0, 6.0, 0, 0], [14.0, 3.0, 0, 0]]]

Moran Process on Graphs

The library also provides a graph-based Moran process [Shakarian2013] with MoranProcess. To use this feature
you must supply at least one Axelrod.graph.Graph object, which can be initialized with just a list of edges:

edges = [(source_1, target1), (source2, target2), ...]

The nodes can be any hashable object (integers, strings, etc.). For example:

>>> import axelrod as axl
>>> from axelrod.graph import Graph
>>> edges = [(0, 1), (1, 2), (2, 3), (3, 1)]
>>> graph = Graph(edges)

Graphs are undirected by default but you can pass directed=True to create a directed graph. Various intermediates
such as the list of neighbors are cached for efficiency by the graph object.

A Moran process can be invoked with one or two graphs. The first graph, the interaction graph, dictates how players
are matched up in the scoring phase. Each player plays a match with each neighbor. The second graph dictates
how players replace another during reproduction. When an individual is selected to reproduce, it replaces one of its
neighbors in the reproduction graph. If only one graph is supplied to the process, the two graphs are assumed to be
the same.

To create a graph-based Moran process, use a graph as follows:

>>> from axelrod.graph import Graph
>>> axl.seed(40)
>>> edges = [(0, 1), (1, 2), (2, 3), (3, 1)]
>>> graph = Graph(edges)
>>> players = [axl.Cooperator(), axl.Cooperator(), axl.Cooperator(), axl.Defector()]
>>> mp = axl.MoranProcess(players, interaction_graph=graph)

(continues on next page)

2.1. Tutorials 19

Axelrod Documentation, Release 0.0.1

(continued from previous page)

>>> results = mp.play()
>>> mp.population_distribution()
Counter({'Cooperator': 4})

You can supply the reproduction_graph as a keyword argument. The standard Moran process is equivalent to us-
ing a complete graph with no loops for the interaction_graph and with loops for the reproduction_graph.

Approximate Moran Process

Due to the high computational cost of a single Moran process, an approximate Moran process is implemented that
can make use of cached outcomes of games. The following code snippet will generate a Moran process in which the
outcomes of the matches played by a Random: 0.5 are sampled from one possible outcome against each opponent
(Defector and Random: 0.5). First the cache is built by passing counter objects of outcomes:

>>> import axelrod as axl
>>> from collections import Counter
>>> cached_outcomes = {}
>>> cached_outcomes[("Random: 0.5", "Defector")] = axl.Pdf(Counter([(1, 1)]))
>>> cached_outcomes[("Random: 0.5", "Random: 0.5")] = axl.Pdf(Counter([(3, 3)]))
>>> cached_outcomes[("Defector", "Defector")] = axl.Pdf(Counter([(1, 1)]))

Now let us create an Approximate Moran Process:

>>> axl.seed(3)
>>> players = [axl.Defector(), axl.Random(), axl.Random()]
>>> amp = axl.ApproximateMoranProcess(players, cached_outcomes)
>>> results = amp.play()
>>> amp.population_distribution()
Counter({'Random: 0.5': 3})

We see that, for this random seed, the Random: 0.5 won this Moran process. This is not what happens in a
standard Moran process where the Random: 0.5 player will not win:

>>> axl.seed(3)
>>> amp = axl.MoranProcess(players)
>>> results = amp.play()
>>> amp.population_distribution()
Counter({'Defector': 3})

Morality Metrics

Tyler Singer-Clark’s June 2014 paper, “Morality Metrics On Iterated Prisoner’s Dilemma Players”
[Singer-Clark2014]), describes several interesting metrics which may be used to analyse IPD tournaments all of which
are available within the ResultSet class. (Tyler’s paper is available here: http://www.scottaaronson.com/morality.pdf).

Each metric depends upon the cooperation rate of the players, defined by Tyler Singer-Clark as:

𝐶𝑅(𝑏) =
𝐶(𝑏)

𝑇𝑇

where C(b) is the total number of turns where a player chose to cooperate and TT is the total number of turns played.

A matrix of cooperation rates is available within a tournament’s ResultSet:

20 Chapter 2. Table of Contents

http://www.scottaaronson.com/morality.pdf

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> [[round(float(ele), 3) for ele in row] for row in results.normalised_cooperation]
[[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], [1.0, 0.005, 1.0, 1.0], [1.0, 0.005, 1.0,
→˓ 1.0]]

There is also a ‘good partner’ matrix showing how often a player cooperated at least as much as its opponent:

>>> results.good_partner_matrix
[[0, 10, 10, 10], [0, 0, 0, 0], [10, 10, 0, 10], [10, 10, 10, 0]]

Each of the metrics described in Tyler’s paper is available as follows (here they are rounded to 2 digits):

>>> [round(ele, 2) for ele in results.cooperating_rating]
[1.0, 0.0, 0.67..., 0.67...]
>>> [round(ele, 2) for ele in results.good_partner_rating]
[1.0, 0.0, 1.0, 1.0]
>>> [round(ele, 2) for ele in results.eigenjesus_rating]
[0.58, 0.0, 0.58, 0.58]
>>> [round(ele, 2) for ele in results.eigenmoses_rating]
[0.37, -0.37, 0.6, 0.6]

Ecological Variant

In Axelrod’s original work an ecological approach based on the payoff matrix of the tournament was used to study the
evolutionary stability of each strategy. Whilst this bears some comparison to the Moran Process, the latter is much
more widely used in the literature.

To study the evolutionary stability of each strategy it is possible to create an ecosystem based on the payoff matrix of
a tournament:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger(),
... axl.Random()]
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> eco = axl.Ecosystem(results)
>>> eco.reproduce(100) # Evolve the population over 100 time steps

Here is how we obtain a nice stackplot of the system evolving over time:

>>> plot = axl.Plot(results)
>>> p = plot.stackplot(eco)
>>> p.show()

Fingerprinting

2.1. Tutorials 21

Axelrod Documentation, Release 0.0.1

Ashlock Fingerprints

In [Ashlock2008], [Ashlock2009] a methodology for obtaining visual representation of a strategy’s behaviour is de-
scribed. The basic method is to play the strategy against a probe strategy with varying noise parameters. These noise
parameters are implemented through the JossAnnTransformer. The Joss-Ann of a strategy is a new strategy
which has a probability x of cooperating, a probability y of defecting, and otherwise uses the response appropriate to
the original strategy. We can then plot the expected score of the strategy against x and y and obtain a heat plot over
the unit square. When x + y >= 1 the JossAnn is created with parameters (1-y, 1-x) and plays against the
Dual of the probe instead. A full definition and explanation is given in [Ashlock2008], [Ashlock2009].

Here is how to create a fingerprint of WinStayLoseShift using TitForTat as a probe:

>>> import axelrod as axl
>>> axl.seed(0) # Fingerprinting is a random process
>>> strategy = axl.WinStayLoseShift
>>> probe = axl.TitForTat
>>> af = axl.AshlockFingerprint(strategy, probe)
>>> data = af.fingerprint(turns=10, repetitions=2, step=0.2)
>>> data
{...
>>> data[(0, 0)]
3.0

The fingerprint method returns a dictionary mapping coordinates of the form (x, y) to the mean score for the
corresponding interactions. We can then plot the above to get:

>>> p = af.plot()
>>> p.show()

22 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

In reality we would need much more detail to make this plot useful.

Running the above with the following parameters:

>>> af.fingerprint(turns=50, repetitions=2, step=0.01)

We get the plot:

2.1. Tutorials 23

Axelrod Documentation, Release 0.0.1

We are also able to specify a matplotlib colour map, interpolation and can remove the colorbar and axis labels:

>>> p = af.plot(cmap='PuOr', interpolation='bicubic', colorbar=False, labels=False)
>>> p.show()

24 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Note that it is also possible to pass a player instance to be fingerprinted and/or as a probe. This allows for the
fingerprinting of parametrized strategies:

>>> axl.seed(0)
>>> player = axl.Random(p=.1)
>>> probe = axl.GTFT(p=.9)
>>> af = axl.AshlockFingerprint(player, probe)
>>> data = af.fingerprint(turns=10, repetitions=2, step=0.2)
>>> data
{...
>>> data[(0, 0)]
4.4...

Transitive Fingerprint

Another implemented fingerprint is the transitive fingerprint. The transitive fingerprint represents the cooperation rate
of a strategy against a set of opponents over a number of turns.

By default the set of opponents consists of 50 Random players that cooperate with increasing probability. This is how
to obtain the transitive fingerprint for TitForTat:

>>> axl.seed(0)
>>> player = axl.TitForTat()

(continues on next page)

2.1. Tutorials 25

Axelrod Documentation, Release 0.0.1

(continued from previous page)

>>> tf = axl.TransitiveFingerprint(player)
>>> data = tf.fingerprint(turns=40)

The data produced is a numpy array showing the cooperation rate against a given opponent (row) in a given turn
(column):

>>> data.shape
(50, 40)

It is also possible to visualise the fingerprint:

>>> p = tf.plot()
>>> p.show()

26 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

It is also possible to fingerprint against a given set of opponents:

>>> axl.seed(1)
>>> opponents = [s() for s in axl.demo_strategies]
>>> tf = axl.TransitiveFingerprint(player, opponents=opponents)
>>> data = tf.fingerprint(turns=5, repetitions=10)

The name of the opponents can be displayed in the plot:

2.1. Tutorials 27

Axelrod Documentation, Release 0.0.1

>>> p = tf.plot(display_names=True)
>>> p.show()

Meta-Strategies

Finite State Machines

A finite state machine (FSM) is a general computation model. In the context of Axelrod, it’s a set of states and
“transitions.” A transition for a given state/previous-opponent-action combination says how the strategy will respond,
both in what action it will take and in what state it will transitions to. That is a transition will specify that in state 𝑎,
the strategy will respond to action 𝑋 by taking action 𝑌 and moving to state 𝑏 (which will tell us which transitions to
use in later moves). We may write this transition (𝑎,𝑋, 𝑏, 𝑌). For Axelrod, a FSM must have a full set of transitions,
which specifies a unique response for each state/previous-opponent-action combination.

See [Harper2017] for a more-detailed explanation.

Representing a strategy as a finite state machine has been useful in some research (see [Harper2017] or
[Ashlock2006b]). Though it’s theoretically possible to represent all strategies as FSMs, this is impractical for most
strategies. However, some strategies lend themselves naturally to a FSM representation. For example, for the Iterated
Prisoner’s Dilemma, we could consider a strategy that cooperates (C) until the opponent defects (D) twice in a row,
then defect forever thereafter. (We’ll call this strategy grudger_2 for the example.) We could call state 1, the state
where the opponent hasn’t started a defect streak; state 2, the state where the opponent is on a 1-defect streak; and
state 3, the state where the opponent has defected twice in a row at some point. Then the transitions would be:

>>> from axelrod import Action
>>> C, D = Action.C, Action.D
>>> grudger_2_transitions = (
... (1, C, 1, C),
... (1, D, 2, C),
... (2, C, 1, C),
... (2, D, 3, D),
... (3, C, 3, D),
... (3, D, 3, D)
...)

The Axelrod library includes a FSM meta-strategy player, which will you let you specify a player’s strategy by this
transition matrix, along with an initial state and initial action. The syntax for this is:

28 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> from axelrod.strategies.finite_state_machines import FSMPlayer
>>> grudger_2 = FSMPlayer(transitions=grudger_2_transitions,
... initial_state=1, initial_action=C)

The library also includes the functionality to compute the memory from the set of transitions. In the grudger_2
example, the memory would be 2. Because either the strategy’s own previous move was a defect (in which case,
continue to defect) or we just need to check if the last two opponent moves were defects or not. Though this function
takes the transitions in a slightly different format:

>>> transition_dict = {
... (t[0], t[1]): (t[2], t[3]) for t in grudger_2_transitions
... }
>>> from axelrod.compute_finite_state_machine_memory import *
>>> get_memory_from_transitions(transitions=transition_dict,
... initial_state=1)
2

Evolvable Players

Several strategies in the library derive from EvolvablePlayer which specifies methods allowing evolutionary
or particle swarm algorithms to be used with these strategies. The Axelrod Dojo library [Axelrod1980] contains
implementations of both algorithms for use with the Axelrod library. Examples include FSMPlayers, ANN (neural
networks), and LookerUp and Gambler (lookup tables).

New EvolvablePlayer subclasses can be added to the library. Any strategy that can define mutation and
crossover methods can be used with the evolutionary algorithm and the atomic mutation version of the Moran
process. To use the particle swarm algorithms, methods to serialize the strategy to and from a vector of floats must be
defined.

Moran Process: Atomic Mutation for Evolvable Players

Additionally, the Moran process implementation supports a second style of mutation suitable for evolving new strate-
gies utilizing the EvolvablePlayer class via its mutate method. This is in contrast to the transitional mutation
that selects one of the other player types rather than (possibly) generating a new player variant. To use this mutation
style set mutation_method=atomic in the initialisation of the Moran process:

>>> import axelrod as axl
>>> C = axl.Action.C
>>> players = [axl.EvolvableFSMPlayer(num_states=2, initial_state=1, initial_
→˓action=C) for _ in range(5)]
>>> mp = axl.MoranProcess(players, turns=10, mutation_method="atomic")
>>> population = mp.play()

Note that this may cause the Moran process to fail to converge, if the mutation rates are very high or the population
size very large. See Moran Process for more information.

2.1.3 Further capabilities in the library

This section shows some of the more intricate capabilities of the library.

Contents:

2.1. Tutorials 29

https://github.com/Axelrod-Python/axelrod-dojo

Axelrod Documentation, Release 0.0.1

Accessing strategies

All of the strategies are accessible from the main name space of the library. For example:

>>> import axelrod as axl
>>> axl.TitForTat()
Tit For Tat
>>> axl.Cooperator()
Cooperator

The main strategies which obey the rules of Axelrod’s original tournament can be found in a list: axelrod.strategies:

>>> axl.strategies
[...

This makes creating a full tournament very straightforward:

>>> players = [s() for s in axl.strategies]
>>> tournament = axl.Tournament(players)

There are a list of various other strategies in the library to make it easier to create a variety of tournaments:

>>> axl.demo_strategies # 5 simple strategies useful for demonstration.
[...
>>> axl.basic_strategies # A set of basic strategies.
[...
>>> axl.long_run_time_strategies # These have a high computational cost
[...

Furthermore there are some strategies that ‘cheat’ (for example by modifying their opponents source code). These can
be found in axelrod.cheating_strategies:

>>> axl.cheating_strategies
[...

All of the strategies in the library are contained in: axelrod.all_strategies:

>>> axl.all_strategies
[...

All strategies are also classified, you can read more about that in Classification of strategies.

Classification of strategies

Due to the large number of strategies, every class and instance of the class has a classifier attribute which
classifies that strategy according to various dimensions.

Here is the classifier for the Cooperator strategy:

>>> import axelrod as axl
>>> expected_dictionary = {
... 'manipulates_state': False,
... 'makes_use_of': set([]),
... 'long_run_time': False,
... 'stochastic': False,
... 'manipulates_source': False,

(continues on next page)

30 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

... 'inspects_source': False,

... 'memory_depth': 0

... } # Order of this dictionary might be different on your machine
>>> axl.Cooperator.classifier == expected_dictionary
True

Note that instances of the class also have this classifier:

>>> s = axl.Cooperator()
>>> s.classifier == expected_dictionary
True

The instance starts with a copy of the class’s classifier dictionary, but is allowed to change this classifier dictionary at
any point, and many strategies do so upon initialization.

In addition to the classifier dictionary, each classifier is defined with some logic that maps classifier definitions to
values. To learn the classification of a strategy, we first look in the strategy’s classifier dictionary, then if the key is not
present, then we refer to this logic. This logic must be defined for a class, and not specific instances.

To lookup the classifier of a strategy, using the classifier dict, or the strategy’s logic as default, we use
Classifiers[<classifier>](<strategy>):

>>> from axelrod import Classifiers
>>> Classifiers['memory_depth'](axl.TitForTat)
1
>>> Classifiers['stochastic'](axl.Random())
True

We can use this classification to generate sets of strategies according to filters which we define in a ‘filterset’ dictionary
and then pass to the ‘filtered_strategies’ function. For example, to identify all the stochastic strategies:

>>> filterset = {
... 'stochastic': True
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
88

Or, to find out how many strategies only use 1 turn worth of memory to make a decision:

>>> filterset = {
... 'memory_depth': 1
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
32

Multiple filters can be specified within the filterset dictionary. To specify a range of memory_depth values, we can use
the ‘min_memory_depth’ and ‘max_memory_depth’ filters:

>>> filterset = {
... 'min_memory_depth': 1,
... 'max_memory_depth': 4
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
55

2.1. Tutorials 31

Axelrod Documentation, Release 0.0.1

We can also identify strategies that make use of particular properties of the tournament. For example, here is the
number of strategies that make use of the length of each match of the tournament:

>>> filterset = {
... 'makes_use_of': ['length']
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
23

Note that in the filterset dictionary, the value for the ‘makes_use_of’ key must be a list. Here is how we might identify
the number of strategies that use both the length of the tournament and the game being played:

>>> filterset = {
... 'makes_use_of': ['length', 'game']
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
16

Some strategies have been classified as having a particularly long run time:

>>> filterset = {
... 'long_run_time': True
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
18

Strategies that manipulate_source, manipulate_state and/or inspect_source return False for the
Classifier.obey_axelrod function:

>>> s = axl.MindBender()
>>> axl.Classifiers.obey_axelrod(s)
False
>>> s = axl.TitForTat()
>>> axl.Classifiers.obey_axelrod(s)
True

Strategy Transformers

What is a Strategy Transformer?

A strategy transformer is a function that modifies an existing strategy. For example, FlipTransformer takes a
strategy and flips the actions from C to D and D to C:

>>> import axelrod as axl
>>> from axelrod.strategy_transformers import *
>>> FlippedCooperator = FlipTransformer()(axl.Cooperator)
>>> player = FlippedCooperator()
>>> opponent = axl.Cooperator()
>>> player.strategy(opponent)
D
>>> opponent.strategy(player)
C

32 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Our player was switched from a Cooperator to a Defector when we applied the transformer. The transformer
also changed the name of the class and player:

>>> player.name
'Flipped Cooperator'
>>> FlippedCooperator.name
'Flipped Cooperator'

This behavior can be suppressed by setting the name_prefix argument:

>>> FlippedCooperator = FlipTransformer(name_prefix=None)(axl.Cooperator)
>>> player = FlippedCooperator()
>>> player.name
'Cooperator'

Note carefully that the transformer returns a class, not an instance of a class. This means that you need to use the
Transformed class as you would normally to create a new instance:

>>> from axelrod.strategy_transformers import NoisyTransformer
>>> player = NoisyTransformer(0.5)(axl.Cooperator)()

rather than NoisyTransformer(0.5)(axl.Cooperator()) or just NoisyTransformer(0.5)(axl.
Cooperator).

Included Transformers

The library includes the following transformers:

• ApologyTransformer: Apologizes after a round of (D, C):

>>> ApologizingDefector = ApologyTransformer([D], [C])(axl.Defector)
>>> player = ApologizingDefector()

You can pass any two sequences in. In this example the player would apologize
after two consequtive rounds of `(D, C)`::

>>> ApologizingDefector = ApologyTransformer([D, D], [C, C])(axl.Defector)
>>> player = ApologizingDefector()

• DeadlockBreakingTransformer: Attempts to break (D, C) -> (C, D) deadlocks by cooperating:

>>> DeadlockBreakingTFT = DeadlockBreakingTransformer()(axl.TitForTat)
>>> player = DeadlockBreakingTFT()

• DualTransformer: The Dual of a strategy will return the exact opposite set of moves to the original strategy
when both are faced with the same history. [Ashlock2008]:

>>> DualWSLS = DualTransformer()(axl.WinStayLoseShift)
>>> player = DualWSLS()

• FlipTransformer: Flips all actions:

>>> FlippedCooperator = FlipTransformer()(axl.Cooperator)
>>> player = FlippedCooperator()

• FinalTransformer(seq=None): Ends the tournament with the moves in the sequence seq, if the tour-
nament_length is known. For example, to obtain a cooperator that defects on the last two rounds:

2.1. Tutorials 33

Axelrod Documentation, Release 0.0.1

>>> FinallyDefectingCooperator = FinalTransformer([D, D])(axl.Cooperator)
>>> player = FinallyDefectingCooperator()

• ForgiverTransformer(p): Flips defections with probability p:

>>> ForgivinDefector = ForgiverTransformer(0.1)(axl.Defector)
>>> player = ForgivinDefector()

• GrudgeTransformer(N): Defections unconditionally after more than N defections:

>>> GrudgingCooperator = GrudgeTransformer(2)(axl.Cooperator)
>>> player = GrudgingCooperator()

• InitialTransformer(seq=None): First plays the moves in the sequence seq, then plays as usual. For
example, to obtain a defector that cooperates on the first two rounds:

>>> InitiallyCooperatingDefector = InitialTransformer([C, C])(axl.Defector)
>>> player = InitiallyCooperatingDefector()

• JossAnnTransformer(probability): Where probability = (x, y), the Joss-Ann of a strat-
egy is a new strategy which has a probability x of choosing the move C, a probability y of choosing the move
D, and otherwise uses the response appropriate to the original strategy. [Ashlock2008]:

>>> JossAnnTFT = JossAnnTransformer((0.2, 0.3))(axl.TitForTat)
>>> player = JossAnnTFT()

• MixedTransformer: Randomly plays a mutation to another strategy (or set of strategies. Here is the syntax
to do this with a set of strategies:

>>> strategies = [axl.Grudger, axl.TitForTat]
>>> probability = [.2, .3] # .5 chance of mutated to one of above
>>> player = MixedTransformer(probability, strategies)(axl.Cooperator)

Here is the syntax when passing a single strategy:

>>> strategy = axl.Grudger
>>> probability = .2
>>> player = MixedTransformer(probability, strategy)(axl.Cooperator)

• NiceTransformer(): Prevents a strategy from defecting if the opponent has not yet defected:

>>> NiceDefector = NiceTransformer()(axl.Defector)
>>> player = NiceDefector()

• NoisyTransformer(noise): Flips actions with probability noise:

>>> NoisyCooperator = NoisyTransformer(0.5)(axl.Cooperator)
>>> player = NoisyCooperator()

• RetaliationTransformer(N): Retaliation N times after a defection:

>>> TwoTitsForTat = RetaliationTransformer(2)(axl.Cooperator)
>>> player = TwoTitsForTat()

• RetaliateUntilApologyTransformer(): adds TitForTat-style retaliation:

34 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> TFT = RetaliateUntilApologyTransformer()(axl.Cooperator)
>>> player = TFT()

• TrackHistoryTransformer: Tracks History internally in the Player instance in a variable
_recorded_history. This allows a player to e.g. detect noise.:

>>> player = TrackHistoryTransformer()(axl.Random)()

Composing Transformers

Transformers can be composed to form new composers, in two ways. You can simply chain together multiple trans-
formers:

>>> cls1 = FinalTransformer([D,D])(InitialTransformer([D,D])(axl.Cooperator))
>>> p1 = cls1()

This defines a strategy that cooperates except on the first two and last two rounds. Alternatively, you can make a new
class using compose_transformers:

>>> cls1 = compose_transformers(FinalTransformer([D, D]), InitialTransformer([D, D]))
>>> p1 = cls1(axl.Cooperator)()
>>> p2 = cls1(axl.Defector)()

Usage as Class Decorators

Transformers can also be used to decorate existing strategies. For example, the strategy BackStabber defects on
the last two rounds. We can encode this behavior with a transformer as a class decorator:

@FinalTransformer([D, D]) # End with two defections
class BackStabber(Player):

"""
Forgives the first 3 defections but on the fourth
will defect forever. Defects on the last 2 rounds unconditionally.
"""

name = 'BackStabber'
classifier = {

'memory_depth': float('inf'),
'stochastic': False,
'inspects_source': False,
'manipulates_source': False,
'manipulates_state': False

}

def strategy(self, opponent):
if not opponent.history:

return C
if opponent.defections > 3:

return D
return C

2.1. Tutorials 35

Axelrod Documentation, Release 0.0.1

Writing New Transformers

To make a new transformer, you need to define a strategy wrapping function with the following signature:

def strategy_wrapper(player, opponent, proposed_action, *args, **kwargs):
"""
Strategy wrapper functions should be of the following form.

Parameters

player: Player object or subclass (self)
opponent: Player object or subclass
proposed_action: an axelrod.Action, C or D

The proposed action by the wrapped strategy
proposed_action = Player.strategy(...)

args, kwargs:
Any additional arguments that you need.

Returns

action: an axelrod.Action, C or D

"""

This example just passes through the proposed_action
return proposed_action

The proposed action will be the outcome of:

self.strategy(player)

in the underlying class (the one that is transformed). The strategy_wrapper still has full access to the player and the
opponent objects and can have arguments.

To make a transformer from the strategy_wrapper function, use StrategyTransformerFactory, which
has signature:

def StrategyTransformerFactory(strategy_wrapper, name_prefix=""):
"""Modify an existing strategy dynamically by wrapping the strategy
method with the argument `strategy_wrapper`.

Parameters

strategy_wrapper: function

A function of the form `strategy_wrapper(player, opponent, proposed_action,
→˓*args, **kwargs)`

Can also use a class that implements
def __call__(self, player, opponent, action)

name_prefix: string, "Transformed "
A string to prepend to the strategy and class name

"""

So we use StrategyTransformerFactory with strategy_wrapper:

TransformedClass = StrategyTransformerFactory(generic_strategy_wrapper)
Cooperator2 = TransformedClass(*args, **kwargs)(axl.Cooperator)

If your wrapper requires no arguments, you can simply proceed as follows:

36 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> TransformedClass = StrategyTransformerFactory(generic_strategy_wrapper)()
>>> Cooperator2 = TransformedClass(axl.Cooperator)

For more examples, see axelrod/strategy_transformers.py.

Accessing tournament results

This tutorial will show you how to access the various results of a tournament:

• Wins: the number of matches won by each player

• Match lengths: the number of turns of each match played by each player (relevant for tournaments with proba-
bilistic ending).

• Scores: the total scores of each player.

• Normalised scores: the scores normalised by matches played and turns.

• Ranking: ranking of players based on median score.

• Ranked names: names of players in ranked order.

• Payoffs: average payoff per turn of each player.

• Payoff matrix: the payoff matrix showing the payoffs of each row player against each column player.

• Payoff standard deviation: the standard deviation of the payoffs matrix.

• Score differences: the score difference between each player.

• Payoff difference means: the mean score differences.

• Cooperation counts: the number of times each player cooperated.

• Normalised cooperation: cooperation count per turn.

• Normalised cooperation: cooperation count per turn.

• State distribution: the count of each type of state of a match

• Normalised state distribution: the normalised count of each type of state of a match

• State to action distribution: the count of each type of state to action pair of a match

• Normalised state distribution: the normalised count of each type of state to action pair of a match

• Initial cooperation count: the count of initial cooperation by each player.

• Initial cooperation rate: the rate of initial cooperation by each player.

• Cooperation rating: cooperation rating of each player

• Vengeful cooperation: a morality metric from the literature (see Morality Metrics).

• Good partner matrix: a morality metric from [Singer-Clark2014].

• Good partner rating: a morality metric from [Singer-Clark2014].

• Eigenmoses rating: a morality metric from [Singer-Clark2014].

• Eigenjesus rating: a morality metric from [Singer-Clark2014].

As shown in Creating and running a simple tournament let us create a tournament:

2.1. Tutorials 37

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
... axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, turns=10, repetitions=3)
>>> results = tournament.play()

Wins

This gives the number of wins obtained by each player:

>>> results.wins
[[0, 0, 0], [3, 3, 3], [0, 0, 0], [0, 0, 0]]

The Defector is the only player to win any matches (all other matches are ties).

Match lengths

This gives the length of the matches played by each player:

>>> import pprint # Nicer formatting of output
>>> pprint.pprint(results.match_lengths)
[[[10.0, 10.0, 10.0, 10.0],

[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0]],

[[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0]],

[[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0]]]

Every player plays 10 turns against every other player (including themselves) for every repetition of the tournament.

Scores

This gives all the total tournament scores (per player and per repetition):

>>> results.scores
[[60, 60, 60], [78, 78, 78], [69, 69, 69], [69, 69, 69]]

Normalised scores

This gives the scores, averaged per opponent and turns:

>>> results.normalised_scores
[[2.0, 2.0, 2.0], [2.6, 2.6, 2.6], [2.3, 2.3, 2.3], [2.3, 2.3, 2.3]]

We see that Cooperator got on average a score of 2 per turn per opponent:

38 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> results.normalised_scores[0]
[2.0, 2.0, 2.0]

Ranking

This gives the ranked index of each player:

>>> results.ranking
[1, 2, 3, 0]

The first player has index 1 (Defector) and the last has index 0 (Cooperator).

Ranked names

This gives the player names in ranked order:

>>> results.ranked_names
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']

Payoffs

This gives for each player, against each opponent every payoff received for each repetition:

>>> pprint.pprint(results.payoffs)
[[[3.0, 3.0, 3.0], [0.0, 0.0, 0.0], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]],
[[5.0, 5.0, 5.0], [1.0, 1.0, 1.0], [1.4, 1.4, 1.4], [1.4, 1.4, 1.4]],
[[3.0, 3.0, 3.0], [0.9, 0.9, 0.9], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]],
[[3.0, 3.0, 3.0], [0.9, 0.9, 0.9], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]]]

Payoff matrix

This gives the mean payoff of each player against every opponent:

>>> pprint.pprint(results.payoff_matrix)
[[3.0, 0.0, 3.0, 3.0],
[5.0, 1.0, 1.4, 1.4],
[3.0, 0.9, 3.0, 3.0],
[3.0, 0.9, 3.0, 3.0]]

We see that the Cooperator gets a mean score of 3 against all players except the Defector:

>>> results.payoff_matrix[0]
[3.0, 0.0, 3.0, 3.0]

Payoff standard deviation

This gives the standard deviation of the payoff of each player against every opponent:

2.1. Tutorials 39

Axelrod Documentation, Release 0.0.1

>>> pprint.pprint(results.payoff_stddevs)
[[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 2.2, 2.2],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0]]

We see that there is no variation for the payoff for Cooperator:

>>> results.payoff_stddevs[0]
[0.0, 0.0, 0.0, 0.0]

Score differences

This gives the score difference for each player against each opponent for every repetition:

>>> pprint.pprint(results.score_diffs)
[[[0.0, 0.0, 0.0], [-5.0, -5.0, -5.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[5.0, 5.0, 5.0], [0.0, 0.0, 0.0], [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
[[0.0, 0.0, 0.0], [-0.5, -0.5, -0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [-0.5, -0.5, -0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]

We see that Cooperator has no difference in score with all players except against the Defector:

>>> results.score_diffs[0][1]
[-5.0, -5.0, -5.0]

Payoff difference means

This gives the mean payoff differences over each repetition:

>>> pprint.pprint(results.payoff_diffs_means)
[[0.0, -5.0, 0.0, 0.0],
[5.0, 0.0, 0.49999999999999983, 0.49999999999999983],
[0.0, -0.49999999999999983, 0.0, 0.0],
[0.0, -0.49999999999999983, 0.0, 0.0]]

Here is the mean payoff difference for the Cooperator strategy, shows that it has no difference with all players
except against the Defector:

>>> results.payoff_diffs_means[0]
[0.0, -5.0, 0.0, 0.0]

Cooperation counts

This gives a total count of cooperation for each player against each opponent:

>>> results.cooperation
[[30, 30, 30, 30], [0, 0, 0, 0], [30, 3, 30, 30], [30, 3, 30, 30]]

40 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Normalised cooperation

This gives the average rate of cooperation against each opponent:

>>> pprint.pprint(results.normalised_cooperation)
[[1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0],
[1.0, 0.1, 1.0, 1.0],
[1.0, 0.1, 1.0, 1.0]]

We see that Cooperator for all the rounds (as expected):

>>> results.normalised_cooperation[0]
[1.0, 1.0, 1.0, 1.0]

State distribution counts

This gives a total state count against each opponent. A state corresponds to 1 turn of a match and can be one of (C,
C), (C, D), (D, C), (D, D) where the first element is the action of the player in question and the second
the action of the opponent:

>>> pprint.pprint(results.state_distribution)
[[Counter(),

Counter({(C, D): 30}),
Counter({(C, C): 30}),
Counter({(C, C): 30})],

[Counter({(D, C): 30}),
Counter(),
Counter({(D, D): 27, (D, C): 3}),
Counter({(D, D): 27, (D, C): 3})],

[Counter({(C, C): 30}),
Counter({(D, D): 27, (C, D): 3}),
Counter(),
Counter({(C, C): 30})],

[Counter({(C, C): 30}),
Counter({(D, D): 27, (C, D): 3}),
Counter({(C, C): 30}),
Counter()]]

Normalised state distribution

This gives the average rate state distribution against each opponent. A state corresponds to 1 turn of a match and can
be one of (C, C), (C, D), (D, C), (D, D) where the first element is the action of the player in question
and the second the action of the opponent:

>>> pprint.pprint(results.normalised_state_distribution)
[[Counter(),

Counter({(C, D): 1.0}),
Counter({(C, C): 1.0}),
Counter({(C, C): 1.0})],

[Counter({(D, C): 1.0}),
Counter(),
Counter({(D, D): 0.9..., (D, C): 0.1...}),

(continues on next page)

2.1. Tutorials 41

Axelrod Documentation, Release 0.0.1

(continued from previous page)

Counter({(D, D): 0.9..., (D, C): 0.1...})],
[Counter({(C, C): 1.0}),
Counter({(D, D): 0.9..., (C, D): 0.1...}),
Counter(),
Counter({(C, C): 1.0})],

[Counter({(C, C): 1.0}),
Counter({(D, D): 0.9..., (C, D): 0.1...}),
Counter({(C, C): 1.0}),
Counter()]]

State to action distribution counts

This gives a total state action pair count against each opponent. A state corresponds to 1 turn of a match and can be
one of (C, C), (C, D), (D, C), (D, D) where the first element is the action of the player in question and
the second the action of the opponent:

>>> pprint.pprint(results.state_to_action_distribution)
[[Counter(),

Counter({((C, D), C): 27}),
Counter({((C, C), C): 27}),
Counter({((C, C), C): 27})],

[Counter({((D, C), D): 27}),
Counter(),
Counter({((D, D), D): 24, ((D, C), D): 3}),
Counter({((D, D), D): 24, ((D, C), D): 3})],

[Counter({((C, C), C): 27}),
Counter({((D, D), D): 24, ((C, D), D): 3}),
Counter(),
Counter({((C, C), C): 27})],

[Counter({((C, C), C): 27}),
Counter({((D, D), D): 24, ((C, D), D): 3}),
Counter({((C, C), C): 27}),
Counter()]]

Normalised state to action distribution

This gives the average rate state to action pair distribution against each opponent. A state corresponds to 1 turn of
a match and can be one of (C, C), (C, D), (D, C), (D, D) where the first element is the action of the
player in question and the second the action of the opponent:

>>> pprint.pprint(results.normalised_state_to_action_distribution)
[[Counter(),

Counter({((C, D), C): 1.0}),
Counter({((C, C), C): 1.0}),
Counter({((C, C), C): 1.0})],

[Counter({((D, C), D): 1.0}),
Counter(),
Counter({((D, C), D): 1.0, ((D, D), D): 1.0}),
Counter({((D, C), D): 1.0, ((D, D), D): 1.0})],

[Counter({((C, C), C): 1.0}),
Counter({((C, D), D): 1.0, ((D, D), D): 1.0}),
Counter(),
Counter({((C, C), C): 1.0})],

(continues on next page)

42 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

[Counter({((C, C), C): 1.0}),
Counter({((C, D), D): 1.0, ((D, D), D): 1.0}),
Counter({((C, C), C): 1.0}),
Counter()]]

Initial cooperation counts

This gives the count of cooperations made by each player during the first turn of every match:

>>> results.initial_cooperation_count
[9.0, 0.0, 9.0, 9.0]

Each player plays an opponent a total of 9 times (3 opponents and 3 repetitions). Apart from the Defector, they all
cooperate on the first turn.

Initial cooperation rates

This gives the rate of which a strategy cooperates during the first turn:

>>> results.initial_cooperation_rate
[1.0, 0.0, 1.0, 1.0]

Morality Metrics

The following morality metrics are available, they are calculated as a function of the cooperation rating:

>>> results.cooperating_rating
[1.0, 0.0, 0.7, 0.7]
>>> pprint.pprint(results.vengeful_cooperation)
[[1.0, 1.0, 1.0, 1.0],
[-1.0, -1.0, -1.0, -1.0],
[1.0, -0.8, 1.0, 1.0],
[1.0, -0.78 1.0, 1.0]]

>>> pprint.pprint(results.good_partner_matrix)
[[0, 3, 3, 3], [0, 0, 0, 0], [3, 3, 0, 3], [3, 3, 3, 0]]
>>> pprint.pprint(results.good_partner_rating)
[1.0, 0.0, 1.0, 1.0]
>>> results.eigenmoses_rating
[0.37..., -0.37..., 0.59..., 0.59...]
>>> results.eigenjesus_rating
[0.57..., 0.0, 0.57..., 0.57...]

For more information about these see Morality Metrics.

Reading and writing interactions from/to file

When dealing with large tournaments it might be desirable to separate the analysis from the actual running of the
tournaments. This can be done by passing a filename argument to the play method of a tournament:

2.1. Tutorials 43

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> players = [s() for s in axl.basic_strategies]
>>> tournament = axl.Tournament(players, turns=4, repetitions=2)
>>> results = tournament.play(filename="basic_tournament.csv")

This will create a file basic_tournament.csv with data that looks something like:

Interaction index,Player index,Opponent index,Repetition,Player name,Opponent name,
→˓Actions,Score,Score difference,Turns,Score per turn,Score difference per turn,Win,
→˓Initial cooperation,Cooperation count,CC count,CD count,DC count,DD count,CC to C
→˓count,CC to D count,CD to C count,CD to D count,DC to C count,DC to D count,DD to C
→˓count,DD to D count,Good partner
0,0,0,0,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
0,0,0,0,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
1,0,0,1,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
1,0,0,1,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
2,0,1,0,Alternator,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,
→˓0,1
2,1,0,0,Anti Tit For Tat,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,
→˓0,1
3,0,1,1,Alternator,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,
→˓0,1
3,1,0,1,Anti Tit For Tat,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,
→˓0,1
4,0,2,0,Alternator,Bully,CDCD,5,-5,4,1.25,-1.25,0,True,2,1,1,0,2,0,1,0,1,0,0,1,0,1
4,2,0,0,Bully,Alternator,DDCD,10,5,4,2.5,1.25,1,False,1,1,0,1,2,0,1,0,0,0,1,1,0,0
5,0,2,1,Alternator,Bully,CDCD,5,-5,4,1.25,-1.25,0,True,2,1,1,0,2,0,1,0,1,0,0,1,0,1
5,2,0,1,Bully,Alternator,DDCD,10,5,4,2.5,1.25,1,False,1,1,0,1,2,0,1,0,0,0,1,1,0,0
6,0,3,0,Alternator,Cooperator,CDCD,16,10,4,4.0,2.5,1,True,2,2,0,2,0,0,2,0,0,1,0,0,0,0
6,3,0,0,Cooperator,Alternator,CCCC,6,-10,4,1.5,-2.5,0,True,4,2,2,0,0,2,0,1,0,0,0,0,0,1
7,0,3,1,Alternator,Cooperator,CDCD,16,10,4,4.0,2.5,1,True,2,2,0,2,0,0,2,0,0,1,0,0,0,0
7,3,0,1,Cooperator,Alternator,CCCC,6,-10,4,1.5,-2.5,0,True,4,2,2,0,0,2,0,1,0,0,0,0,0,1
8,0,4,0,Alternator,Cycler DC,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
8,4,0,0,Cycler DC,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
9,0,4,1,Alternator,Cycler DC,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
9,4,0,1,Cycler DC,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
10,0,5,0,Alternator,Defector,CDCD,2,-10,4,0.5,-2.5,0,True,2,0,2,0,2,0,0,0,2,0,0,1,0,1
10,5,0,0,Defector,Alternator,DDDD,12,10,4,3.0,2.5,1,False,0,0,0,2,2,0,0,0,0,0,2,0,1,0
11,0,5,1,Alternator,Defector,CDCD,2,-10,4,0.5,-2.5,0,True,2,0,2,0,2,0,0,0,2,0,0,1,0,1
11,5,0,1,Defector,Alternator,DDDD,12,10,4,3.0,2.5,1,False,0,0,0,2,2,0,0,0,0,0,2,0,1,0
12,0,6,0,Alternator,Grudger,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
12,6,0,0,Grudger,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
13,0,6,1,Alternator,Grudger,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
13,6,0,1,Grudger,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
14,0,7,0,Alternator,Suspicious Tit For Tat,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,
→˓2,1,0,0,0,1
14,7,0,0,Suspicious Tit For Tat,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,
→˓0,1,2,0,0,0,1
15,0,7,1,Alternator,Suspicious Tit For Tat,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,
→˓2,1,0,0,0,1
15,7,0,1,Suspicious Tit For Tat,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,
→˓0,1,2,0,0,0,1
16,0,8,0,Alternator,Tit For Tat,CDCD,13,5,4,3.25,1.25,1,True,2,1,1,2,0,0,1,0,1,1,0,0,
→˓0,0
16,8,0,0,Tit For Tat,Alternator,CCDC,8,-5,4,2.0,-1.25,0,True,3,1,2,1,0,1,0,0,1,1,0,0,
→˓0,1
17,0,8,1,Alternator,Tit For Tat,CDCD,13,5,4,3.25,1.25,1,True,2,1,1,2,0,0,1,0,1,1,0,0,
→˓0,0

(continues on next page)

44 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

17,8,0,1,Tit For Tat,Alternator,CCDC,8,-5,4,2.0,-1.25,0,True,3,1,2,1,0,1,0,0,1,1,0,0,
→˓0,1
18,0,9,0,Alternator,Win-Shift Lose-Stay: D,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,
→˓1,1,0,0,0,1
18,9,0,0,Win-Shift Lose-Stay: D,Alternator,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,0,1,
→˓1,0,1,0,0,0,1
19,0,9,1,Alternator,Win-Shift Lose-Stay: D,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,
→˓1,1,0,0,0,1
19,9,0,1,Win-Shift Lose-Stay: D,Alternator,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,0,1,
→˓1,0,1,0,0,0,1
20,0,10,0,Alternator,Win-Stay Lose-Shift: C,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,
→˓0,1,1,0,0,0,1
20,10,0,0,Win-Stay Lose-Shift: C,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,
→˓0,1,0,1,0,0,1
21,0,10,1,Alternator,Win-Stay Lose-Shift: C,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,
→˓0,1,1,0,0,0,1
21,10,0,1,Win-Stay Lose-Shift: C,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,
→˓0,1,0,1,0,0,1
22,1,1,0,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,
→˓0,0,0,1,0,1
22,1,1,0,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,
→˓0,0,0,1,0,1
23,1,1,1,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,
→˓0,0,0,1,0,1
23,1,1,1,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,
→˓0,0,0,1,0,1
24,1,2,0,Anti Tit For Tat,Bully,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,
→˓0,1
24,2,1,0,Bully,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,
→˓0,0
25,1,2,1,Anti Tit For Tat,Bully,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,
→˓0,1
25,2,1,1,Bully,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,
→˓0,0
26,1,3,0,Anti Tit For Tat,Cooperator,CDDD,18,15,4,4.5,3.75,1,True,1,1,0,3,0,0,1,0,0,0,
→˓2,0,0,0
26,3,1,0,Cooperator,Anti Tit For Tat,CCCC,3,-15,4,0.75,-3.75,0,True,4,1,3,0,0,1,0,2,0,
→˓0,0,0,0,1
27,1,3,1,Anti Tit For Tat,Cooperator,CDDD,18,15,4,4.5,3.75,1,True,1,1,0,3,0,0,1,0,0,0,
→˓2,0,0,0
27,3,1,1,Cooperator,Anti Tit For Tat,CCCC,3,-15,4,0.75,-3.75,0,True,4,1,3,0,0,1,0,2,0,
→˓0,0,0,0,1
28,1,4,0,Anti Tit For Tat,Cycler DC,CCDC,7,-5,4,1.75,-1.25,0,True,3,2,1,0,1,0,1,1,0,0,
→˓0,1,0,1
28,4,1,0,Cycler DC,Anti Tit For Tat,DCDC,12,5,4,3.0,1.25,1,False,2,2,0,1,1,0,1,0,0,1,
→˓0,1,0,0
29,1,4,1,Anti Tit For Tat,Cycler DC,CCDC,7,-5,4,1.75,-1.25,0,True,3,2,1,0,1,0,1,1,0,0,
→˓0,1,0,1
29,4,1,1,Cycler DC,Anti Tit For Tat,DCDC,12,5,4,3.0,1.25,1,False,2,2,0,1,1,0,1,0,0,1,
→˓0,1,0,0
30,1,5,0,Anti Tit For Tat,Defector,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,
→˓0,0,1
30,5,1,0,Defector,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,
→˓0,0,0
31,1,5,1,Anti Tit For Tat,Defector,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,
→˓0,0,1
31,5,1,1,Defector,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,
→˓0,0,0 (continues on next page)

2.1. Tutorials 45

Axelrod Documentation, Release 0.0.1

(continued from previous page)

32,1,6,0,Anti Tit For Tat,Grudger,CDDC,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,0,0,1,1,
→˓0,1
32,6,1,0,Grudger,Anti Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,0,0,
→˓1,1
33,1,6,1,Anti Tit For Tat,Grudger,CDDC,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,0,0,1,1,
→˓0,1
33,6,1,1,Grudger,Anti Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,0,0,
→˓1,1
34,1,7,0,Anti Tit For Tat,Suspicious Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,
→˓0,1,1,0,0,1,0,0,1
34,7,1,0,Suspicious Tit For Tat,Anti Tit For Tat,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,
→˓1,1,0,0,1,1,0,0,0,1
35,1,7,1,Anti Tit For Tat,Suspicious Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,
→˓0,1,1,0,0,1,0,0,1
35,7,1,1,Suspicious Tit For Tat,Anti Tit For Tat,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,
→˓1,1,0,0,1,1,0,0,0,1
...

Note that depending on the order in which the matches have been played, the rows could also be in a different order.

It is possible to read in this data file to obtain interactions:

>>> interactions = axl.interaction_utils.read_interactions_from_file("basic_
→˓tournament.csv")

This gives a dictionary mapping pairs of player indices to interaction histories:

>>> interactions[(0, 1)]
[[(C, C), (D, D), (C, C), (D, D)], [(C, C), (D, D), (C, C), (D, D)]]

This should allow for easy manipulation of data outside of the capabilities within the library.

Note that you can supply build_results=False as a keyword argument to tournament.play() to prevent keeping or
loading interactions in memory, since the total memory footprint can be large for various combinations of parameters.
The memory usage scales as 𝑂(players2 × turns × repetitions).

Parallel processing

When dealing with large tournaments on a multi core machine it is possible to run the tournament in parallel although
this is not currently supported on Windows. Using processes=0 will simply use all available cores:

>>> import axelrod as axl
>>> players = [s() for s in axl.basic_strategies]
>>> tournament = axl.Tournament(players, turns=4, repetitions=2)
>>> results = tournament.play(processes=0)

Using the cache

Whilst for stochastic strategies, every repetition of a Match will give a different result, for deterministic strategies,
when there is no noise there is no need to re run the match. The library has a DeterministicCache class that
allows us to quickly replay matches.

46 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Caching a Match

To illustrate this, let us time the play of a match without a cache:

>>> import axelrod as axl
>>> import timeit
>>> def run_match():
... p1, p2 = axl.GoByMajority(), axl.Alternator()
... match = axl.Match((p1, p2), turns=200)
... return match.play()
>>> time_with_no_cache = timeit.timeit(run_match, number=500)
>>> time_with_no_cache
2.2295279502868652

Here is how to create a new empty cache:

>>> cache = axl.DeterministicCache()
>>> len(cache)
0

Let us rerun the above match but using the cache:

>>> p1, p2 = axl.GoByMajority(), axl.Alternator()
>>> match = axl.Match((p1, p2), turns=200, deterministic_cache=cache)
>>> match.play()
[(C, C), ..., (C, D)]

We can take a look at the cache:

>>> cache
{('Soft Go By Majority', 'Alternator'): [(C, C), ..., (C, D)]}
>>> len(cache)
1
>>> len(cache[(axl.GoByMajority(), axl.Alternator())])
200

This maps a triplet of 2 player names and the match length to the resulting interactions. We can rerun the code and
compare the timing:

>>> def run_match_with_cache():
... p1, p2 = axl.GoByMajority(), axl.Alternator()
... match = axl.Match((p1, p2), turns=200, deterministic_cache=cache)
... return match.play()
>>> time_with_cache = timeit.timeit(run_match_with_cache, number=500)
>>> time_with_cache
0.04215192794799805
>>> time_with_cache < time_with_no_cache
True

We can write the cache to file:

>>> cache.save("cache.txt")
True

2.1. Tutorials 47

Axelrod Documentation, Release 0.0.1

Caching a Tournament

Tournaments will automatically create caches as needed on a match by match basis.

Caching a Moran Process

A prebuilt cache can also be used in a Moran process (by default a new cache is used):

>>> cache = axl.DeterministicCache("cache.txt")
>>> players = [axl.GoByMajority(), axl.Alternator(),
... axl.Cooperator(), axl.Grudger()]
>>> mp = axl.MoranProcess(players, deterministic_cache=cache)
>>> populations = mp.play()
>>> mp.winning_strategy_name
Defector

We see that the cache has been augmented, although note that this particular number will depend on the stochastic
behaviour of the Moran process:

>>> len(cache)
18

Setting a random seed

The library has a variety of strategies whose behaviour is stochastic. To ensure reproducible results a random seed
should be set. As both Numpy and the standard library are used for random number generation, both seeds need to be
set. To do this we can use the seed function:

>>> import axelrod as axl
>>> players = (axl.Random(), axl.MetaMixer()) # Two stochastic strategies
>>> axl.seed(0)
>>> results = axl.Match(players, turns=3).play()

We obtain the same results if it is played with the same seed:

>>> axl.seed(0)
>>> results == axl.Match(players, turns=3).play()
True

Note that this is equivalent to:

>>> import numpy
>>> import random
>>> players = (axl.Random(), axl.MetaMixer())
>>> random.seed(0)
>>> numpy.random.seed(0)
>>> results = axl.Match(players, turns=3).play()
>>> numpy.random.seed(0)
>>> random.seed(0)
>>> results == axl.Match(players, turns=3).play()
True

48 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Player information

It is possible to determine what information players know about their matches. By default all known information is
given. For example let us create a match with 5 turns between FirstBySteinAndRapoport and Alternator.
The latter of these two always defects on the last 2 turns:

>>> import axelrod as axl
>>> players = (axl.Alternator(), axl.FirstBySteinAndRapoport())
>>> axl.Match(players, turns=5).play()
[(C, C), (D, C), (C, C), (D, D), (C, D)]

We can play the same match but let us tell the players that the match lasts 6 turns:

>>> axl.Match(players, turns=5, match_attributes={"length": 6}).play()
[(C, C), (D, C), (C, C), (D, C), (C, D)]

We can also pass this information to a tournament. Let us create a tournament with 5 turns but ensure the players
believe the match length is infinite (unknown):

>>> tournament = axl.Tournament(players, turns=5,
... match_attributes={"length": float('inf')})

The match_attributes dictionary can also be used to pass game and noise.

Player equality

It is possible to test for player equality using ==:

>>> import axelrod as axl
>>> p1, p2, p3 = axl.Alternator(), axl.Alternator(), axl.TitForTat()
>>> p1 == p2
True
>>> p1 == p3
False

Note that this checks all the attributes of an instance:

>>> p1.name = "John Nash"
>>> p1 == p2
False

This however does not check if the players will behave in the same way. For example here are two equivalent players:

>>> p1 = axl.Alternator()
>>> p2 = axl.Cycler("CD")
>>> p1 == p2
False

To check if player strategies are equivalent you can use Fingerprinting.

Using and playing different stage games

As described in Play Contexts and Generic Prisoner’s Dilemma the default game used for the Prisoner’s Dilemma is
given by:

2.1. Tutorials 49

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> pd = axl.game.Game()
>>> pd
Axelrod game: (R,P,S,T) = (3, 1, 0, 5)
>>> pd.RPST()
(3, 1, 0, 5)

These Game objects are used to score matches, tournaments and Moran processes:

>>> pd.score((axl.Action.C, axl.Action.C))
(3, 3)
>>> pd.score((axl.Action.C, axl.Action.D))
(0, 5)
>>> pd.score((axl.Action.D, axl.Action.C))
(5, 0)
>>> pd.score((axl.Action.D, axl.Action.D))
(1, 1)

It is possible to run a matches, tournaments and Moran processes with a different game. For example here is the game
of chicken:

>>> chicken = axl.game.Game(r=0, s=-1, t=1, p=-10)
>>> chicken
Axelrod game: (R,P,S,T) = (0, -10, -1, 1)
>>> chicken.RPST()
(0, -10, -1, 1)

Here is a simple tournament run with this game:

>>> players = [axl.Cooperator(), axl.Defector(), axl.TitForTat()]
>>> tournament = axl.Tournament(players, game=chicken)
>>> results = tournament.play()
>>> results.ranked_names
['Cooperator', 'Defector', 'Tit For Tat']

The default Prisoner’s dilemma has different results:

>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Defector', 'Tit For Tat', 'Cooperator']

2.1.4 Contributing

This section contains a variety of tutorials that should help you contribute to the library.

Contents:

Guidelines

All contributions to this repository are welcome via pull request on the github repository.

The project follows the following guidelines:

1. Use the base Python library unless completely necessary. A few external libraries (such as numpy) have been
included in requirements.txt – feel free to use these as needed.

50 Chapter 2. Table of Contents

https://github.com/Axelrod-Python/Axelrod

Axelrod Documentation, Release 0.0.1

2. Try as best as possible to follow PEP8 which includes using descriptive variable names.

3. Code Format: Use the Black formatter to format all code and the isort utility to sort import statements.

4. Commits: Please try to use commit messages that give a meaningful history for anyone using git’s log features.
Try to use messages that complete sentence, “This commit will. . . ” There is some excellent guidance on the
subject from Chris Beams

5. Testing: the project uses the unittest library and has a nice testing suite that makes some things very easy to
write tests for. Please try to increase the test coverage on pull requests.

6. Merging pull-requests: We require two of the (currently three) core-team maintainers to merge. Opening a PR
for early feedback or to check test coverage is OK, just indicate that the PR is not ready to merge (and update
when it is).

By submitting a pull request, you are agreeing that your work may be distributed under the terms of the project’s
licence and you will become one of the project’s joint copyright holders.

Contributing a strategy

This section contains a variety of tutorials that should help you contribute a new strategy to the library.

Contents:

Instructions

Here is the file structure for the Axelrod repository:

.
axelrod

__init__.py
ecosystem.py
game.py
player.py
plot.py
result_set.py
round_robin.py
tournament.py
/strategies/

__init__.py
_strategies.py
cooperator.py
defector.py
grudger.py
titfortat.py
gobymajority.py
...

/tests/
integration
strategies
unit

test_*.py
README.md

To contribute a strategy you need to follow as many of the following steps as possible:

1. Fork the github repository.

2.1. Tutorials 51

https://www.python.org/dev/peps/pep-0008/
https://github.com/ambv/black
https://github.com/timothycrosley/isort
https://chris.beams.io/posts/git-commit/
https://docs.python.org/2/library/unittest.html
https://raw.githubusercontent.com/Axelrod-Python/Axelrod/master/LICENSE.txt
https://github.com/Axelrod-Python/Axelrod

Axelrod Documentation, Release 0.0.1

2. Add a <strategy>.py file to the strategies directory or add a strategy to a pre existing <strategy>.py
file.

3. Update the ./axelrod/strategies/_strategies.py file.

4. If you created a new <strategy>.py file add it to .docs/reference/all_strategies.rst.

5. Write some unit tests in the ./axelrod/tests/strategies/ directory.

6. This one is also optional: ping us a message and we’ll add you to the Contributors team. This would add an
Axelrod-Python organisation badge to your profile.

7. Send us a pull request.

If you would like a hand with any of the above please do get in touch: we’re always delighted to have new
strategies.

Writing the new strategy

Identify a new strategy

If you’re not sure if you have a strategy that has already been implemented, you can search the Strategies index to see
if they are implemented. If you are still unsure please get in touch: via the gitter room or open an issue.

Several strategies are special cases of other strategies. For example, both Cooperator and Defector are special
cases of Random, Random(1) and Random(0) respectively. While we could eliminate Cooperator in its current
form, these strategies are intentionally left as is as simple examples for new users and contributors. Nevertheless,
please feel free to update the docstrings of strategies like Random to point out such cases.

The code

There are a couple of things that need to be created in a strategy.py file. Let us take a look at the TitForTat class
(located in the axelrod/strategies/titfortat.py file):

class TitForTat(Player):
"""
A player starts by cooperating and then mimics previous move by
opponent.

Note that the code for this strategy is written in a fairly verbose
way. This is done so that it can serve as an example strategy for
those who might be new to Python.

Names

- Rapoport's strategy: [Axelrod1980]_
- TitForTat: [Axelrod1980]_
"""

These are various properties for the strategy
name = 'Tit For Tat'
classifier = {

'memory_depth': 1, # Four-Vector = (1.,0.,1.,0.)
'stochastic': False,
'inspects_source': False,
'manipulates_source': False,

(continues on next page)

52 Chapter 2. Table of Contents

https://gitter.im/Axelrod-Python/Axelrod
https://github.com/Axelrod-Python/Axelrod/issues

Axelrod Documentation, Release 0.0.1

(continued from previous page)

'manipulates_state': False
}

def strategy(self, opponent):
"""This is the actual strategy"""
First move
if len(self.history) == 0:

return C
React to the opponent's last move
if opponent.history[-1] == D:

return D
return C

The first thing that is needed is a docstring that explains what the strategy does:

"""A player starts by cooperating and then mimics previous move by opponent."""

Secondly, any alternate names should be included and if possible references provided (this helps when trying to identify
if a strategy has already been implemented or not):

- Rapoport's strategy: [Axelrod1980]_
- TitForTat: [Axelrod1980]_

These references can be found in the Bibliography. If a required references is not there please feel free to add it or just
get in touch and we’d be happy to help.

After that simply add in the string that will appear as the name of the strategy:

name = 'Tit For Tat'

Note that this is mainly used in plots by matplotlib so you can use LaTeX if you want to. For example there is
strategy with 𝜋 as a name:

name = 'π'

Following that you can add in the classifier dictionary:

classifier = {
'memory_depth': 1, # Four-Vector = (1.,0.,1.,0.)
'stochastic': False,
'inspects_source': False,
'manipulates_source': False,
'manipulates_state': False

}

This helps classify the strategy as described in Classification of strategies.

After that the only thing required is to write the strategy method which takes an opponent as an argument. In the
case of TitForTat the strategy checks if it has any history (if len(self.history) == 0). If it does not
(ie this is the first play of the match) then it returns C. If not, the strategy simply repeats the opponent’s last move
(return opponent.history[-1]):

def strategy(opponent):
"""This is the actual strategy"""
First move
if len(self.history) == 0:

(continues on next page)

2.1. Tutorials 53

Axelrod Documentation, Release 0.0.1

(continued from previous page)

return C
Repeat the opponent's last move
return opponent.history[-1]

The variables C and D represent the cooperate and defect actions respectively.

Some strategies make specific use of the variables of a match to create their own attributes. In principle these attributes
could change throughout a match or tournament if the match properties (like the game matrix) change, so we require
that this logic live in the receive_match_attributes method for correct dynamic updating. Here is how this
is done for Stalker:

def receive_match_attributes(self)
R, P, S, T = self.match_attributes["game"].RPST()
self.very_good_score = R
self.very_bad_score = P
self.wish_score = (R + P) / 2

There are various examples of helpful functions and properties that make writing strategies easier. Do not hesitate to
get in touch with the Axelrod-Python team for guidance.

Writing docstrings

The project takes pride in its documentation for the strategies and its corresponding bibliography. The docstring is a
string which describes a method, module or class. The docstrings help the user in understanding the working of the
strategy and the source of the strategy. The docstring must be written in the following way, i.e.:

"""This is a docstring.

It can be written over multiple lines.

"""

Sections

The Sections of the docstring are:

1. Working of the strategy

A brief summary on how the strategy works, E.g.:

class TitForTat(Player):
"""
A player starts by cooperating and then mimics the
previous action of the opponent.
"""

2. Bibliography/Source of the strategy

A section to mention the source of the strategy or the paper from which the strategy was taken. The section must
start with the Names section. For E.g.:

class TitForTat(Player):
"""
A player starts by cooperating and then mimics the

(continues on next page)

54 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

previous action of the opponent.

Names:

- Rapoport's strategy: [Axelrod1980]_
- TitForTat: [Axelrod1980]_
"""

Here, the info written under the Names section tells about the source of the TitforTat strategy.
[Axelrod1980]_ corresponds to the bibliographic item in docs/reference/bibliography.rst.
If you are using a source that is not in the bibliography please add it.

Adding the new strategy

To get the strategy to be recognised by the library we need to add it to the files that initialise when someone types
import axelrod. This is done in the axelrod/strategies/_strategies.py file.

To classify the new strategy, run rebuild_classifier_table:

python rebuild_classifier_table.py

This will update axelrod/strategies/_strategies.py. Check that the recorded classifications for the
strategies are what you expected.

If you have added your strategy to a file that already existed (perhaps you added a new variant of titfortat to the
titfortat.py file), simply add your strategy to the list of strategies already imported from <file_name>.py:

from <file_name> import <list-of-strategies>

If you have added your strategy to a new file then simply add a line similar to above with your new strategy.

Once you have done that, you need to add the class itself to the all_strategies list (in axelrod/
strategies/_strategies.py).

Finally, if you have created a new module (a new <strategy.py> file) please add it to the docs/references/
all_strategies.rst file so that it will automatically be documented.

Classifying the new strategy

Every strategy class has a classifier dictionary that gives some classification of the strategy according to certain dimen-
sions. Some of the classifiers have formulas that try to compute the value for different strategies. Where these exist,
they’re overridden by the values defined in this dictionary. When creating a new strategy, you should try to fill out all
of the dictionary.

Let us take a look at the dimensions available by looking at TitForTat:

>>> import axelrod
>>> classifier = axelrod.TitForTat.classifier
>>> for key in sorted(classifier.keys()):
... print(key)
inspects_source
long_run_time
makes_use_of
manipulates_source

(continues on next page)

2.1. Tutorials 55

Axelrod Documentation, Release 0.0.1

(continued from previous page)

manipulates_state
memory_depth
stochastic

You can read more about this in the Classification of strategies section but here are some tips about filling this part in
correctly.

Note that when an instance of a class is created it gets it’s own copy of the default classifier dictionary from the class.
This might sometimes be modified by the initialisation depending on input parameters. A good example of this is the
Joss strategy:

>>> joss = axelrod.FirstByJoss()
>>> boring_joss = axelrod.FirstByJoss(p=1)
>>> axelrod.Classifiers["stochastic"](joss)
True
>>> axelrod.Classifiers["stochastic"](boring_joss)
False

A classifier value defined on the instance overrides the value defined for the class.

There are currently three important dimensions that help identify if a strategy obeys axelrod’s original tournament
rules.

1. inspects_source - does the strategy ‘read’ any source code that it would not normally have access to. An
example of this is Geller.

2. manipulates_source - does the strategy ‘write’ any source code that it would not normally be able to. An
example of this is Mind Bender.

3. manipulates_state - does the strategy ‘change’ any attributes that it would not normally be able to. An
example of this is Mind Reader.

These dimensions are currently relevant to the obey_axelrod function which checks if a strategy obeys Axelrod’s
original rules.

Writing tests for the new strategy

To write tests you either need to create a file called test_<library>.py where <library>.py is the name
of the file you have created or similarly add tests to the test file that is already present in the axelrod/tests/
strategies/ directory.

Typically we want to test the following:

• That the strategy behaves as intended on the first move and subsequent moves, triggering any expected actions

• That the strategy initializes correctly

A TestPlayer class has been written that has a member function versus_test which can be used to test how
the player plays against a given opponent. It takes an optional keyword argument seed (useful and necessary for
stochastic strategies, None by default):

self.versus_test(opponent=axelrod.MockPlayer(actions=[C, D]),
expected_actions=[(D, C), (C, D), (C, C)], seed=None)

In this case the player is tested against an opponent that will cycle through C, D. The expected_actions are the
actions played by both the tested player and the opponent in the match. In this case we see that the player is expected
to play D, C, C against C, D, C.

56 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Note that you can either user a MockPlayer that will cycle through a given sequence or you can use another strategy
from the Axelrod library.

The function versus_test also accepts a dictionary parameter of attributes to check at the end of the match. For
example this test checks if the player’s internal variable opponent_class is set to "Cooperative":

actions = [(C, C)] * 6
self.versus_test(axelrod.Cooperator(), expected_actions=actions

attrs={"opponent_class": "Cooperative"})

Note here that instead of passing a sequence of actions as an opponent we are passing an actual player from the axelrod
library.

The function versus_test also accepts a dictionary parameter of match attributes that dictate the knowledge of the
players. For example this test assumes that players do not know the length of the match:

actions = [(C, C), (C, D), (D, C), (C, D)]
self.versus_test(axelrod.Alternator(), expected_actions=actions,

match_attributes={"length": float("inf")})

The function versus_test also accepts a dictionary parameter of keyword arguments that dictate how the player is
initiated. For example this tests how the player plays when initialised with p=1:

actions = [(C, C), (C, D), (C, C), (C, D)]
self.versus_test(axelrod.Alternator(), expected_actions=actions,

init_kwargs={"p": 1})

As an example, the tests for Tit-For-Tat are as follows:

import axelrod
from test_player import TestPlayer

C, D = axelrod.Action.C, axelrod.Action.D

class TestTitForTat(TestPlayer):
"""
Note that this test is referred to in the documentation as an example on
writing tests. If you modify the tests here please also modify the
documentation.
"""

name = "Tit For Tat"
player = axelrod.TitForTat
expected_classifier = {

'memory_depth': 1,
'stochastic': False,
'makes_use_of': set(),
'inspects_source': False,
'manipulates_source': False,
'manipulates_state': False

}

def test_strategy(self):
self.first_play_test(C)
self.second_play_test(rCC=C, rCD=D, rDC=C, rDD=D)

Play against opponents
actions = [(C, C), (C, D), (D, C), (C, D)]

(continues on next page)

2.1. Tutorials 57

Axelrod Documentation, Release 0.0.1

(continued from previous page)

self.versus_test(axelrod.Alternator(), expected_actions=actions)

actions = [(C, C), (C, C), (C, C), (C, C)]
self.versus_test(axelrod.Cooperator(), expected_actions=actions)

actions = [(C, D), (D, D), (D, D), (D, D)]
self.versus_test(axelrod.Defector(), expected_actions=actions)

This behaviour is independent of knowledge of the Match length
actions = [(C, C), (C, D), (D, C), (C, D)]
self.versus_test(axelrod.Alternator(), expected_actions=actions,

match_attributes={"length": float("inf")})

We can also test against random strategies
actions = [(C, D), (D, D), (D, C), (C, C)]
self.versus_test(axelrod.Random(), expected_actions=actions,

seed=0)

actions = [(C, C), (C, D), (D, D), (D, C)]
self.versus_test(axelrod.Random(), expected_actions=actions,

seed=1)

If you would like to test against a sequence of moves you should use
a MockPlayer
opponent = axelrod.MockPlayer(actions=[C, D])
actions = [(C, C), (C, D), (D, C), (C, D)]
self.versus_test(opponent, expected_actions=actions)

opponent = axelrod.MockPlayer(actions=[C, C, D, D, C, D])
actions = [(C, C), (C, C), (C, D), (D, D), (D, C), (C, D)]
self.versus_test(opponent, expected_actions=actions)

There are other examples of using this testing framework in axelrod/tests/strategies/
test_titfortat.py.

The expected_classifier dictionary tests that the classification of the strategy is as expected (the tests for this
is inherited in the init method). Please be sure to classify new strategies according to the already present dimensions
but if you create a new dimension you do not need to re classify all the other strategies (but feel free to! :)), but please
do add it to the default_classifier in the axelrod/player.py parent class.

Contributing to the library

All contributions (docs, tests, etc) are very welcome, if there is a specific functionality that you would like to add then
please open an issue (or indeed take a look at the ones already there and jump in the conversation!).

If you want to work on documentation please keep in mind that doctests are encouraged to help keep the documentation
up to date.

Running tests

Basic test runners

The project has an extensive test suite which is run each time a new contribution is made to the repository. If you want
to check that all the tests pass before you submit a pull request you can run the tests yourself:

58 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

$ python -m unittest discover

If you are developing new tests for the suite, it is useful to run a single test file so that you don’t have to wait for the
entire suite each time. For example, to run only the tests for the Grudger strategy:

$ python -m unittest axelrod.tests.strategies.test_grudger

The test suite is divided into three categories: strategy tests, unit tests and integration tests. Each can be run individu-
ally:

$ python -m unittest discover -s axelrod.tests.strategies
$ python -m unittest discover -s axelrod.tests.unit
$ python -m unittest discover -s axelrod.tests.integration

Testing coverage of tests

The library has 100% test coverage. This can be tested using the Python coverage package. Once installed (pip
install coverage), to run the tests and check the coverage for the entire library:

$ coverage run --source=axelrod -m unittest discover

You can then view a report of the coverage:

$ coverage report -m

You can also run the coverage on a subset of the tests. For example, to run the tests with coverage for the Grudger
strategy:

$ coverage run --source=axelrod -m unittest axelrod.tests.strategies.test_grudger

Testing the documentation

The documentation is doctested, to run those tests you can run the script:

$ python doctests.py

You can also run the doctests on any given file. For example, to run the doctests for the docs/tutorials/
getting_started/match.rst file:

$ python -m doctest docs/tutorials/getting_started/match.rst

Type checking

The library makes use of type hinting, this can be checked using the Python mypy package. Once installed (pip
install mypy), to run the type checker:

$ python run_mypy.py

You can also run the type checker on a given file. For example, to run the type checker on the Grudger strategy:

2.1. Tutorials 59

Axelrod Documentation, Release 0.0.1

$ mypy --ignore-missing-imports --follow-imports skip axelrod/strategies/grudger.py

Continuous integration

This project is being taken care of by travis-ci, so all tests will be run automatically when opening a pull request. You
can see the latest build status here.

2.2 Reference

This section is the reference guide for the various components of the library.

Contents:

2.2.1 Background to Axelrod’s Tournament

In the 1980s, professor of Political Science Robert Axelrod ran a tournament inviting strategies from collaborators all
over the world for the Iterated Prisoner’s Dilemma.

Another nice write up of Axelrod’s work and this tournament on github was put together by Artem Kaznatcheev here.

The Prisoner’s Dilemma

The Prisoner’s dilemma is the simple two player game shown below:

Cooperate Defect
Cooperate (3,3) (0,5)
Defect (5,0) (1,1)

If both players cooperate they will each go to prison for 2 years and receive an equivalent utility of 3. If one cooperates
and the other defects: the defector does not go to prison and the cooperator goes to prison for 5 years, the cooperator
receives a utility of 0 and the defector a utility of 5. If both defect: they both go to prison for 4 years and receive an
equivalent utility of 1.

Note: Years in prison doesn’t equal to utility directly. The formula is U = 5 - Y for Y in [0, 5], where U is the utility,
Y are years in prison. The reason is to follow the original Axelrod’s scoring.

By simply investigating the best responses against both possible actions of each player it is immediate to see that the
Nash equilibrium for this game is for both players to defect.

The Iterated Prisoner’s Dilemma

We can use the basic Prisoner’s Dilemma as a stage game in a repeated game. Players now aim to maximise the utility
(corresponding to years in prison) over a repetition of the game. Strategies can take in to account both players history
and so can take the form:

“I will cooperate unless you defect 3 times in a row at which point I will defect forever.”

60 Chapter 2. Table of Contents

https://travis-ci.org/
https://travis-ci.org/Axelrod-Python/Axelrod
http://en.wikipedia.org/wiki/The_Evolution_of_Cooperation#Axelrod.27s_tournaments
http://en.wikipedia.org/wiki/The_Evolution_of_Cooperation#Axelrod.27s_tournaments
https://plus.google.com/101780559173703781847/posts
https://egtheory.wordpress.com/2015/03/02/ipd/
http://en.wikipedia.org/wiki/Prisoner%27s_dilemma

Axelrod Documentation, Release 0.0.1

Axelrod ran such a tournament (twice) and invited strategies from anyone who would contribute. The tournament was
a round robin and the winner was the strategy who had the lowest total amount of time in prison.

This tournament has been used to study how cooperation can evolve from a very simple set of rules. This is mainly
because the winner of both tournaments was ‘tit for tat’: a strategy that would never defect first (referred to as a ‘nice’
strategy).

2.2.2 Play Contexts and Generic Prisoner’s Dilemma

There are four possible round outcomes:

• Mutual cooperation: (𝐶,𝐶)

• Defection: (𝐶,𝐷) or (𝐷,𝐶)

• Mutual defection: (𝐷,𝐷)

Each of these corresponds to one particular set of payoffs in the following generic Prisoner’s dilemma:

Cooperate Defect
Cooperate (R,R) (S,T)
Defect (T,S) (P,P)

For the above to constitute a Prisoner’s dilemma, the following must hold: 𝑇 > 𝑅 > 𝑃 > 𝑆.

These payoffs are commonly referred to as:

• 𝑅: the Reward payoff (default value in the library: 3)

• 𝑃 : the Punishment payoff (default value in the library: 1)

• 𝑆: the Sucker payoff (default value in the library: 0)

• 𝑇 : the Temptation payoff (default value in the library: 5)

A particular Prisoner’s Dilemma is often described by the 4-tuple: (𝑅,𝑃, 𝑆, 𝑇):

>>> import axelrod
>>> axelrod.game.DefaultGame.RPST()
(3, 1, 0, 5)

2.2.3 Tournaments

Axelrod’s first tournament

Axelrod’s first tournament is described in his 1980 paper entitled ‘Effective choice in the Prisoner’s Dilemma’
[Axelrod1980]. This tournament included 14 strategies (plus a random “strategy”) and they are listed below, (ranked
in the order in which they appeared).

An indication is given as to whether or not this strategy is implemented in the axelrod library. If this strategy is not
implemented please do send us a pull request.

2.2. Reference 61

http://www.jstor.org/stable/173932
https://github.com/Axelrod-Python/Axelrod/pulls

Axelrod Documentation, Release 0.0.1

Table 1: Strategies in Axelrod’s first tournament
Name Author Axelrod Library Name
Tit For Tat Anatol Rapoport TitForTat
Tideman and Chieruzzi T Nicolaus Tideman and Paula Chieruzz TidemanAndChieruzzi
Nydegger Rudy Nydegger Nydegger
Grofman Bernard Grofman Grofman
Shubik Martin Shubik Shubik
Stein and Rapoport Stein and Anatol Rapoport SteinAndRapoport
Grudger James W Friedman Grudger
Davis Morton Davis Davis
Graaskamp Jim Graaskamp Graaskamp
FirstByDowning Leslie Downing RevisedDowning
Feld Scott Feld Feld
Joss Johann Joss Joss
Tullock Gordon Tullock Tullock
(Name withheld) Unknown UnnamedStrategy
Random Unknownd Random

Axelrod’s second tournament

The code for Axelrod’s second touranment was originally published by the University of Michigan Center for the
Study of Complex Systems and is now available from Robert Axelrod’s personal website subject to a disclaimer which
states:

“All materials in this archive are copyright (c) 1996, Robert Axelrod, unless otherwise noted. You are free
to download these materials and use them without restriction.”

The Axelrod-Python organisation has published a modified version of the original code. In the following table, links
to original code point to the Axelrod-Python repository.

Table 2: Strategies in Axelrod’s second tournament
Original Code Author Axelrod Library Name
GRASR Unknown Not Implemented
K31R Gail Grisell GoByMajority
K32R Charles Kluepfel SecondByKluepfel
K33R Harold Rabbie Not Implemented
K34R James W Friedman Grudger
K35R Abraham Getzler Not Implemented
K36R Roger Hotz Not Implemented
K37R George Lefevre Not Implemented
K38R Nelson Weiderman Not Implemented
K39R Tom Almy Not Implemented
K40R Robert Adams Not Implemented
K41R Herb Weiner SecondByWeiner
K42R Otto Borufsen SecondByBorufsen
K43R R D Anderson Not Implemented
K44R William Adams SecondByWmAdams
K45R Michael F McGurrin Not Implemented
K46R Graham J Eatherley SecondByEatherley
K47R Richard Hufford SecondByRichardHufford

Continued on next page

62 Chapter 2. Table of Contents

http://lsa.umich.edu/cscs/
http://lsa.umich.edu/cscs/
http://www-personal.umich.edu/~axe/research/Software/CC/CC2.html
http://www-personal.umich.edu/~axe/research/Software/CC/CCDisclaimer.html
https://github.com/Axelrod-Python/TourExec
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/grasr.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k31r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k32r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k33r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k34r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k35r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k36r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k37r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k38r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k39r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k40r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k41r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k42r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k43r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k44r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k45r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k46r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k47r.f

Axelrod Documentation, Release 0.0.1

Table 2 – continued from previous page
Original Code Author Axelrod Library Name
K48R George Hufford Not Implemented
K49R Rob Cave SecondByCave
K50R Rik Smoody Not Implemented
K51R John Willaim Colbert Not Implemented
K52R David A Smith Not Implemented
K53R Henry Nussbacher Not Implemented
K54R William H Robertson Not Implemented
K55R Steve Newman Not Implemented
K56R Stanley F Quayle Not Implemented
K57R Rudy Nydegger Not Implemented
K58R Glen Rowsam SecondByRowsam
K59R Leslie Downing RevisedDowning
K60R Jim Graaskamp and Ken Katzen SecondByGraaskampKatzen
K61R Danny C Champion SecondByChampion
K62R Howard R Hollander Not Implemented
K63R George Duisman Not Implemented
K64R Brian Yamachi SecondByYamachi
K65R Mark F Batell Not Implemented
K66R Ray Mikkelson Not Implemented
K67R Craig Feathers SecondByTranquilizer
K68R Fransois Leyvraz SecondByLeyvraz
K69R Johann Joss Not Implemented
K70R Robert Pebly Not Implemented
K71R James E Hall Not Implemented
K72R Edward C White Jr SecondByWhite
K73R George Zimmerman Not Implemented
K74R Edward Friedland Not Implemented
K74RXX Edward Friedland Not Implemented
K75R Paul D Harrington SecondByHarrington
K76R David Gladstein SecondByGladstein
K77R Scott Feld Not Implemented
K78R Fred Mauk Not Implemented
K79R Dennis Ambuehl and Kevin Hickey Not Implemented
K80R Robyn M Dawes and Mark Batell Not Implemented
K81R Martyn Jones Not Implemented
K82R Robert A Leyland Not Implemented
K83R Paul E Black SecondByWhite
K84R T Nicolaus Tideman and Paula Chieruzzi SecondByTidemanChieruzzi
K85R Robert B Falk and James M Langsted Not Implemented
K86R Bernard Grofman Not Implemented
K87R E E H Schurmann Not Implemented
K88R Scott Appold SecondByAppold
K89R Gene Snodgrass Not Implemented
K90R John Maynard Smith TitFor2Tats
K91R Jonathan Pinkley Not Implemented
K92R Anatol Rapoport TitForTat
K93R Unknown Not Implemented
KPAVLOVC Unknown WinStayLoseShift
KRANDOMC Unknown Random

Continued on next page

2.2. Reference 63

https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k48r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k49r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k50r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k51r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k52r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k53r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k54r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k55r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k56r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k57r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k58r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K59R.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k60r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k61r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k62r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k63r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k64r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k65r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k66r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k67r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k68r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k69r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k70r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k71r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k72r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K73R.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K74R.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K74RXX.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K75R.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k76r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k77r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k78r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k79r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k80r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k81r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k82r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k83r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k84r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k85r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k86r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k87r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k88r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k89r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k90r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k91r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K92R.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k93r.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KPavlovC.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KRandomC.f

Axelrod Documentation, Release 0.0.1

Table 2 – continued from previous page
Original Code Author Axelrod Library Name
KTF2TC Unknown TitFor2Tats
KTITFORTATC Unknown TitForTat

Stewart and Plotkin’s Tournament (2012)

In 2012, Alexander Stewart and Joshua Plotkin ran a variant of Axelrod’s tournament with 19 strategies to test the
effectiveness of the then newly discovered Zero-Determinant strategies.

The paper is identified as doi: 10.1073/pnas.1208087109 and referred to as [Stewart2012] below. Unfortunately the
details of the tournament and the implementation of strategies is not clear in the manuscript. We can, however, make
reasonable guesses to the implementation of many strategies based on their names and classical definitions.

The following classical strategies are included in the library:

Table 3: Strategies in Stewart and Plotkin’s tournament
S&P Name Long Name Axelrod Library Name
ALLC Always Cooperate Cooperator
ALLD Always Defect Defector
EXTORT-2 Extort-2 ZDExtort2
HARD_MAJO Hard majority HardGoByMajority
HARD_JOSS Hard Joss Joss
HARD_TFT Hard tit for tat HardTitForTat
HARD_TF2T Hard tit for 2 tats HardTitFor2Tats
TFT Tit-For-Tat TitForTat
GRIM Grim Grudger
GTFT Generous Tit-For-Tat GTFT
TF2T Tit-For-Two-Tats TitFor2Tats
WSLS Win-Stay-Lose-Shift WinStayLoseShift
RANDOM Random Random
ZDGTFT-2 ZDGTFT-2 ZDGTFT2

ALLC, ALLD, TFT and RANDOM are defined above. The remaining classical strategies are defined below. The
tournament also included two Zero Determinant strategies, both implemented in the library. The full table of strategies
and results is available online.

Memory one strategies

In 2012 Press and Dyson [Press2012] showed interesting results with regards to so called memory one strategies.
Stewart and Plotkin implemented a number of these. A memory one strategy is simply a probabilistic strategy that is
defined by 4 parameters. These four parameters dictate the probability of cooperating given 1 of 4 possible outcomes
of the previous round:

• 𝑃 (𝐶 |𝐶𝐶) = 𝑝1

• 𝑃 (𝐶 |𝐶𝐷) = 𝑝2

• 𝑃 (𝐶 |𝐷𝐶) = 𝑝3

• 𝑃 (𝐶 |𝐷𝐷) = 𝑝4

The memory one strategy class is used to define a number of strategies below.

64 Chapter 2. Table of Contents

https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KTF2TC.f
https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KTitForTatC.f
http://www.pnas.org/content/109/26/10134.full.pdf
https://www.pnas.org/content/pnas/109/26/10134/F1.large.jpg?width=800&height=600&carousel=1
http://www.pnas.org/content/109/26/10409.full.pdf

Axelrod Documentation, Release 0.0.1

GTFT

Generous-Tit-For-Tat plays Tit-For-Tat with occasional forgiveness, which prevents cycling defections against itself.

GTFT is defined as a memory-one strategy as follows:

• 𝑃 (𝐶 |𝐶𝐶) = 1

• 𝑃 (𝐶 |𝐶𝐷) = 𝑝

• 𝑃 (𝐶 |𝐷𝐶) = 1

• 𝑃 (𝐶 |𝐷𝐷) = 𝑝

where 𝑝 = min
(︁
1− 𝑇−𝑅

𝑅−𝑆 ,
𝑅−𝑃
𝑇−𝑃

)︁
.

GTFT came 2nd in average score and 18th in wins in S&P’s tournament.

TF2T

Tit-For-Two-Tats is like Tit-For-Tat but only retaliates after two defections rather than one. This is not a memory-one
strategy.

TF2T came 3rd in average score and last (?) in wins in S&P’s tournament.

WSLS

Win-Stay-Lose-Shift is a strategy that shifts if the highest payoff was not earned in the previous round. WSLS is also
known as “Win-Stay-Lose-Switch” and “Pavlov”. It can be seen as a memory-one strategy as follows:

• 𝑃 (𝐶 |𝐶𝐶) = 1

• 𝑃 (𝐶 |𝐶𝐷) = 0

• 𝑃 (𝐶 |𝐷𝐶) = 0

• 𝑃 (𝐶 |𝐷𝐷) = 1

WSLS came 7th in average score and 13th in wins in S&P’s tournament.

RANDOM

Random is a strategy that was defined in Axelrod’s first tournament, note that this is also a memory-one strategy:

• 𝑃 (𝐶 |𝐶𝐶) = 0.5

• 𝑃 (𝐶 |𝐶𝐷) = 0.5

• 𝑃 (𝐶 |𝐷𝐶) = 0.5

• 𝑃 (𝐶 |𝐷𝐷) = 0.5

RANDOM came 8th in average score and 8th in wins in S&P’s tournament.

2.2. Reference 65

Axelrod Documentation, Release 0.0.1

ZDGTFT-2

This memory-one strategy is defined by the following four conditional probabilities based on the last round of play:

• 𝑃 (𝐶 |𝐶𝐶) = 1

• 𝑃 (𝐶 |𝐶𝐷) = 1/8

• 𝑃 (𝐶 |𝐷𝐶) = 1

• 𝑃 (𝐶 |𝐷𝐷) = 1/4

This strategy came 1st in average score and 16th in wins in S&P’s tournament.

EXTORT-2

This memory-one strategy is defined by the following four conditional probabilities based on the last round of play:

• 𝑃 (𝐶 |𝐶𝐶) = 8/9

• 𝑃 (𝐶 |𝐶𝐷) = 1/2

• 𝑃 (𝐶 |𝐷𝐶) = 1/3

• 𝑃 (𝐶 |𝐷𝐷) = 0

This strategy came 18th in average score and 2nd in wins in S&P’s tournament.

GRIM

Grim is not defined in [Stewart2012] but it is defined elsewhere as follows. GRIM (also called “Grim trigger”),
cooperates until the opponent defects and then always defects thereafter. In the library this strategy is called Grudger.

GRIM came 10th in average score and 11th in wins in S&P’s tournament.

HARD_JOSS

HARD_JOSS is not defined in [Stewart2012] but is otherwise defined as a strategy that plays like TitForTat but
cooperates only with probability 0.9. This is a memory-one strategy with the following probabilities:

• 𝑃 (𝐶 |𝐶𝐶) = 0.9

• 𝑃 (𝐶 |𝐶𝐷) = 0

• 𝑃 (𝐶 |𝐷𝐶) = 1

• 𝑃 (𝐶 |𝐷𝐷) = 0

HARD_JOSS came 16th in average score and 4th in wins in S&P’s tournament.

HARD_JOSS as described above is implemented in the library as Joss and is the same as the Joss strategy from
Axelrod’s first tournament.

HARD_MAJO

HARD_MAJO is not defined in [Stewart2012] and is presumably the same as “Go by Majority”, defined as follows:
the strategy defects on the first move, defects if the number of defections of the opponent is greater than or equal to
the number of times it has cooperated, and otherwise cooperates,

66 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

HARD_MAJO came 13th in average score and 5th in wins in S&P’s tournament.

HARD_TFT

Hard TFT is not defined in [Stewart2012] but is elsewhere defined as follows. The strategy cooperates on the first
move, defects if the opponent has defected on any of the previous three rounds, and otherwise cooperates.

HARD_TFT came 12th in average score and 10th in wins in S&P’s tournament.

HARD_TF2T

Hard TF2T is not defined in [Stewart2012] but is elsewhere defined as follows. The strategy cooperates on the first
move, defects if the opponent has defected twice (successively) of the previous three rounds, and otherwise cooperates.

HARD_TF2T came 6th in average score and 17th in wins in S&P’s tournament.

Calculator

This strategy is not unambiguously defined in [Stewart2012] but is defined elsewhere. Calculator plays like Joss for
20 rounds. On the 21 round, Calculator attempts to detect a cycle in the opponents history, and defects unconditionally
thereafter if a cycle is found. Otherwise Calculator plays like TFT for the remaining rounds.

Prober

PROBE is not unambiguously defined in [Stewart2012] but is defined elsewhere as Prober. The strategy starts by
playing D, C, C on the first three rounds and then defects forever if the opponent cooperates on rounds two and three.
Otherwise Prober plays as TitForTat would.

Prober came 15th in average score and 9th in wins in S&P’s tournament.

Prober2

PROBE2 is not unambiguously defined in [Stewart2012] but is defined elsewhere as Prober2. The strategy starts by
playing D, C, C on the first three rounds and then cooperates forever if the opponent played D then C on rounds two
and three. Otherwise Prober2 plays as TitForTat would.

Prober2 came 9th in average score and 12th in wins in S&P’s tournament.

Prober3

PROBE3 is not unambiguously defined in [Stewart2012] but is defined elsewhere as Prober3. The strategy starts by
playing D, C on the first two rounds and then defects forever if the opponent cooperated on round two. Otherwise
Prober3 plays as TitForTat would.

Prober3 came 17th in average score and 7th in wins in S&P’s tournament.

2.2. Reference 67

http://www.prisoners-dilemma.com/strategies.html

Axelrod Documentation, Release 0.0.1

HardProber

HARD_PROBE is not unambiguously defined in [Stewart2012] but is defined elsewhere as HardProber. The strategy
starts by playing D, D, C, C on the first four rounds and then defects forever if the opponent cooperates on rounds two
and three. Otherwise Prober plays as TitForTat would.

HardProber came 5th in average score and 6th in wins in S&P’s tournament.

NaiveProber

NAIVE_PROBER is a modification of Tit For Tat strategy which with a small probability randomly defects. Default
value for a probability of defection is 0.1.

Beaufils et al.’s tournament (1997)

In 1997, [Beaufils1997] the authors used a tournament to describe a new strategy of their called “Gradual”. The
description given in the paper of “Gradual” is:

This strategy acts as tit-for-tat, except when it is time to forgive and remember the past. It uses cooperation
on the first move and then continues to do so as long as the other player cooperates. Then after the first
defection of the other player, it defects one time and cooperates two times; after the second defection of
the opponent, it defects two times and cooperates two times, . . . after the nth defection it reacts with n
consecutive defections and then calms down its opponent with two cooperations.

This is the only description of the strategy however the paper does include a table of results of the tournament. The
scores of “Gradual” against the opponents (including itself) are:

Table 4: Score of Gradual reported in [Beaufils1997]
Name Name used in [Beaufils1997] Score (1000 turns)
Cooperator coop 3000
Defector def 915
Random rand 2815
Tit For Tat tft 3000
Grudger spite 3000
Cycler DDC p_nst 2219
Cycler CCD p_kn 3472
Go By Majority sft_mj 3000
Suspicious Tit For Tat mist 2996
Prober prob 2999
Gradual grad 3000
Win Stay Lose Shift pav 3000

The following code reproduces the above:

>>> import axelrod as axl
>>> players = [axl.Cooperator(),
... axl.Defector(),
... axl.Random(),
... axl.TitForTat(),
... axl.Grudger(),
... axl.CyclerDDC(),
... axl.CyclerCCD(),

(continues on next page)

68 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

(continued from previous page)

... axl.GoByMajority(),

... axl.SuspiciousTitForTat(),

... axl.Prober(),

... axl.OriginalGradual(),

... axl.WinStayLoseShift(),

...]
>>> axl.seed(1)
>>> turns = 1000
>>> tournament = axl.Tournament(players, turns=turns, repetitions=1)
>>> results = tournament.play(progress_bar=False)
>>> for average_score_per_turn in results.payoff_matrix[-2]:
... print(round(average_score_per_turn * turns, 1))
3000.0
915.0
2763.0
3000.0
3000.0
2219.0
3472.0
3000.0
2996.0
2999.0
3000.0
3000.0

The OriginalGradual strategy implemented has the following description:

A player that punishes defections with a growing number of defections but after punishing for punish-
ment_limit number of times enters a calming state and cooperates no matter what the opponent does for
two rounds.

The punishment_limit is incremented whenever the opponent defects and the strategy is not in either
calming or punishing state.

Note that a different version of Gradual appears in [CRISTAL-SMAC2018]. This was brought to the attention of
the maintainers of the library by one of the authors of [Beaufils1997] and is documented here https://github.com/
Axelrod-Python/Axelrod/issues/1294.

The strategy implemented in [CRISTAL-SMAC2018] and defined here as Gradual has the following description:

Similar to OriginalGradual, this is a player that punishes defections with a growing number of defections
but after punishing for punishment_limit number of times enters a calming state and cooperates no matter
what the opponent does for two rounds.

This version of Gradual is an update of OriginalGradual and the difference is that the punishment_limit
is incremented whenever the opponent defects (regardless of the state of the player).

This highlights the importance of best practice and reproducible computational research. Both strategies implemented
in this library are fully tested and documented clearly and precisely.

2.2.4 Strategies index

Here are the docstrings of all the strategies in the library.

class axelrod.strategies.adaptive.Adaptive(initial_plays: List[axelrod.action.Action] =
None)

Start with a specific sequence of C and D, then play the strategy that has worked best, recalculated each turn.

Names:

2.2. Reference 69

https://github.com/Axelrod-Python/Axelrod/issues/1294
https://github.com/Axelrod-Python/Axelrod/issues/1294

Axelrod Documentation, Release 0.0.1

• Adaptive: [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.adaptor.AbstractAdaptor(delta:
Dict[Tuple[axelrod.action.Action,
axelrod.action.Action], float], perr:
float = 0.01)

An adaptive strategy that updates an internal state based on the last round of play. Using this state the player
Cooperates with a probability derived from the state.

s, float: the internal state, initially 0

perr, float: an error threshold for misinterpreted moves

delta, a dictionary of floats: additive update values for s depending on the last round’s outcome

Names:

• Adaptor: [Hauert2002]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.adaptor.AdaptorBrief
An Adaptor trained on short interactions.

Names:

• AdaptorBrief: [Hauert2002]

class axelrod.strategies.adaptor.AdaptorLong
An Adaptor trained on long interactions.

Names:

• AdaptorLong: [Hauert2002]

class axelrod.strategies.alternator.Alternator
A player who alternates between cooperating and defecting.

Names

• Alternator: [Axelrod1984]

• Periodic player CD: [Mittal2009]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.ann.ANN(num_features: int, num_hidden: int, weights: List[float] =
None)

Artificial Neural Network based strategy.

A single layer neural network based strategy, with the following features: * Opponent’s first move is C *
Opponent’s first move is D * Opponent’s second move is C * Opponent’s second move is D * Player’s previous
move is C * Player’s previous move is D * Player’s second previous move is C * Player’s second previous move
is D * Opponent’s previous move is C * Opponent’s previous move is D * Opponent’s second previous move is
C * Opponent’s second previous move is D * Total opponent cooperations * Total opponent defections * Total
player cooperations * Total player defections * Round number

Original Source: https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#
file-ann-strategy-test-L60

Names

70 Chapter 2. Table of Contents

https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#file-ann-strategy-test-L60
https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#file-ann-strategy-test-L60

Axelrod Documentation, Release 0.0.1

• Artificial Neural Network based strategy: Original name by Martin Jones

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.ann.EvolvableANN(num_features: int, num_hidden: int, weights:
List[float] = None, mutation_probability: float
= None, mutation_distance: int = 5)

Evolvable version of ANN.

crossover(other)
Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.

mutate()
Optional method to allow Player to produce a variant (not in place).

class axelrod.strategies.ann.EvolvedANN
A strategy based on a pre-trained neural network with 17 features and a hidden layer of size 10.

Trained using the axelrod_dojo version: 0.0.8 Training data is archived at doi.org/10.5281/zenodo.1306926

Names:

• Evolved ANN: Original name by Martin Jones.

class axelrod.strategies.ann.EvolvedANN5
A strategy based on a pre-trained neural network with 17 features and a hidden layer of size 5.

Trained using the axelrod_dojo version: 0.0.8 Training data is archived at doi.org/10.5281/zenodo.1306931

Names:

• Evolved ANN 5: Original name by Marc Harper.

class axelrod.strategies.ann.EvolvedANNNoise05
A strategy based on a pre-trained neural network with a hidden layer of size 5, trained with noise=0.05.

Trained using the axelrod_dojo version: 0.0.8 Training data i archived at doi.org/10.5281/zenodo.1314247.

Names:

• Evolved ANN Noise 5: Original name by Marc Harper.

axelrod.strategies.ann.activate(bias: List[float], hidden: List[float], output: List[float], inputs:
List[int])→ float

Compute the output of the neural network: output = relu(inputs * hidden_weights + bias) * output_weights

axelrod.strategies.ann.compute_features(player: axelrod.player.Player, opponent: axel-
rod.player.Player)→ List[int]

Compute history features for Neural Network: * Opponent’s first move is C * Opponent’s first move is D *
Opponent’s second move is C * Opponent’s second move is D * Player’s previous move is C * Player’s previous
move is D * Player’s second previous move is C * Player’s second previous move is D * Opponent’s previous
move is C * Opponent’s previous move is D * Opponent’s second previous move is C * Opponent’s second
previous move is D * Total opponent cooperations * Total opponent defections * Total player cooperations *
Total player defections * Round number

axelrod.strategies.ann.split_weights(weights: List[float], num_features: int, num_hidden:
int)→ Tuple[List[List[float]], List[float], List[float]]

Splits the input vector into the the NN bias weights and layer parameters.

class axelrod.strategies.apavlov.APavlov2006
APavlov attempts to classify its opponent as one of five strategies: Cooperative, ALLD, STFT, PavlovD, or

2.2. Reference 71

Axelrod Documentation, Release 0.0.1

Random. APavlov then responds in a manner intended to achieve mutual cooperation or to defect against
uncooperative opponents.

Names:

• Adaptive Pavlov 2006: [Li2007]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.apavlov.APavlov2011
APavlov attempts to classify its opponent as one of four strategies: Cooperative, ALLD, STFT, or Random.
APavlov then responds in a manner intended to achieve mutual cooperation or to defect against uncooperative
opponents.

Names:

• Adaptive Pavlov 2011: [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.appeaser.Appeaser
A player who tries to guess what the opponent wants.

Switch the classifier every time the opponent plays D. Start with C, switch between C and D when opponent
plays D.

Names:

• Appeaser: Original Name by Jochen Müller

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.averagecopier.AverageCopier
The player will cooperate with probability p if the opponent’s cooperation ratio is p. Starts with random decision.

Names:

• Average Copier: Original name by Geraint Palmer

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.averagecopier.NiceAverageCopier
Same as Average Copier, but always starts by cooperating.

Names:

• Average Copier: Original name by Owen Campbell

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

Strategies submitted to Axelrod’s first tournament. All strategies in this module are prefixed by FirstBy to indicate that
they were submitted in Axelrod’s First tournament by the given author.

Note that these strategies are implemented from the descriptions presented in:

Axelrod, R. (1980). Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution, 24(1), 3–25.

These descriptions are not always clear and/or precise and when assumptions have been made they are explained in
the strategy docstrings.

72 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.axelrod_first.FirstByAnonymous
Submitted to Axelrod’s first tournament by a graduate student whose name was withheld.

The description written in [Axelrod1980] is:

> “This rule has a probability of cooperating, P, which is initially 30% and > is updated every 10 moves. P
is adjusted if the other player seems random, > very cooperative, or very uncooperative. P is also adjusted
after move 130 > if the rule has a lower score than the other player. Unfortunately, the > complex process
of adjustment frequently left the probability of cooperation > in the 30% to 70% range, and therefore the rule
appeared random to many > other players.”

Given the lack of detail this strategy is implemented based on the final sentence of the description which is to
have a cooperation probability that is uniformly random in the 30 to 70% range.

Names:

• (Name withheld): [Axelrod1980]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstByDavis(rounds_to_cooperate: int = 10)
Submitted to Axelrod’s first tournament by Morton Davis.

The description written in [Axelrod1980] is:

> “A player starts by cooperating for 10 rounds then plays Grudger, > defecting if at any point the opponent has
defected.”

This strategy came 8th in Axelrod’s original tournament.

Names:

• Davis: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for the remaining rounds if the opponent ever plays D.

class axelrod.strategies.axelrod_first.FirstByDowning
Submitted to Axelrod’s first tournament by Downing

The description written in [Axelrod1980] is:

> “This rule selects its choice to maximize its own longterm expected payoff on > the assumption that the
other rule cooperates with a fixed probability which > depends only on whether the other player cooperated
or defected on the previous > move. These two probabilities estimates are continuously updated as the game
> progresses. Initially, they are both assumed to be .5, which amounts to the > pessimistic assumption that
the other player is not responsive. This rule is > based on an outcome maximization interpretation of human
performances proposed > by Downing (1975).”

The Downing (1975) paper is “The Prisoner’s Dilemma Game as a Problem-Solving Phenomenon”
[Downing1975] and this is used to implement the strategy.

There are a number of specific points in this paper, on page 371:

> “[. . .] In these strategies, O’s [the opponent’s] response on trial N is in some way dependent or contingent
on S’s [the subject’s] response on trial N- 1. All varieties of these lag-one matching strategies can be defined
by two parameters: the conditional probability that O will choose C following C by S, P(C_o | C_s) and the
conditional probability that O will choose C following D by S, P(C_o, D_s).”

Throughout the paper the strategy (S) assumes that the opponent (O) is playing a reactive strategy defined by
these two conditional probabilities.

2.2. Reference 73

Axelrod Documentation, Release 0.0.1

The strategy aims to maximise the long run utility against such a strategy and the mechanism for this is described
in Appendix A (more on this later).

One final point from the main text is, on page 372:

> “For the various lag-one matching strategies of O, the maximizing strategies of S will be 100% C, or 100% D,
or for some strategies all S strategies will be functionally equivalent.”

This implies that the strategy S will either always cooperate or always defect (or be indifferent) dependent on
the opponent’s defining probabilities.

To understand the particular mechanism that describes the strategy S, we refer to Appendix A of the paper on
page 389.

The stated goal of the strategy is to maximize (using the notation of the paper):

EV_TOT = #CC(EV_CC) + #CD(EV_CD) + #DC(EV_DC) + #DD(EV_DD)

This differs from the more modern literature where #CC, #CD, #DC and #DD would imply that counts of both
players playing C and C, or the first playing C and the second D etc. . . In this case the author uses an argument
based on the sequence of plays by the player (S) so #CC denotes the number of times the player plays C twice
in a row.

On the second page of the appendix, figure 4 (page 390) identifies an expression for EV_TOT. A specific term
is made to disappear in the case of T - R = P - S (which is not the case for the standard (R, P, S, T) = (3, 1, 0, 5)):

> “Where (t - r) = (p - s), EV_TOT will be a function of alpha, beta, t, r, p, s and N are known and V which is
unknown.

V is the total number of cooperations of the player S (this is noted earlier in the abstract) and as such the final
expression (with only V as unknown) can be used to decide if V should indicate that S always cooperates or not.

This final expression is used to show that EV_TOT is linear in the number of cooperations by the player thus
justifying the fact that the player will always cooperate or defect.

All of the above details are used to give the following interpretation of the strategy:

1. On any given turn, the strategy will estimate alpha = P(C_o | C_s) and beta = P(C_o | D_s). 2. The strategy
will calculate the expected utility of always playing C OR always playing D against the estimated probabilities.
This corresponds to:

a. In the case of the player always cooperating:

P_CC = alpha and P_CD = 1 - alpha

b. In the case of the player always defecting:

P_DC = beta and P_DD = 1 - beta

Using this we have:

E_C = alpha R + (1 - alpha) S E_D = beta T + (1 - beta) P

Thus at every turn, the strategy will calculate those two values and cooperate if E_C > E_D and will defect if
E_C < E_D.

In the case of E_C = E_D, the player will alternate from their previous move. This is based on specific sentence
from Axelrod’s original paper:

> “Under certain circumstances, DOWNING will even determine that the best > strategy is to alternate cooper-
ation and defection.”

One final important point is the early game behaviour of the strategy. It has been noted that this strategy was
implemented in a way that assumed that alpha and beta were both 1/2:

74 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

> “Initially, they are both assumed to be .5, which amounts to the > pessimistic assumption that the other player
is not responsive.”

Note that if alpha = beta = 1 / 2 then:

E_C = alpha R + alpha S E_D = alpha T + alpha P

And from the defining properties of the Prisoner’s Dilemma (T > R > P > S) this gives: E_D > E_C. Thus,
the player opens with a defection in the first two rounds. Note that from the Axelrod publications alone there
is nothing to indicate defections on the first two rounds, although a defection in the opening round is clear.
However there is a presentation available at http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/notes/
azhar-ipd-Oct19th.pdf That clearly states that Downing defected in the first two rounds, thus this is assumed to
be the behaviour. Interestingly, in future tournaments this strategy was revised to not defect on the opening two
rounds.

It is assumed that these first two rounds are used to create initial estimates of beta = P(C_o | D_s) and we will
use the opening play of the player to estimate alpha = P(C_o | C_s). Thus we assume that the opponents first
play is a response to a cooperation “before the match starts”.

So for example, if the plays are:

[(D, C), (D, C)]

Then the opponent’s first cooperation counts as a cooperation in response to the non existent cooperation of
round 0. The total number of cooperations in response to a cooperation is 1. We need to take in to account that
extra phantom cooperation to estimate the probability alpha=P(C_o | C_s) as 1 / 1 = 1.

This is an assumption with no clear indication from the literature.

– This strategy came 10th in Axelrod’s original tournament.

Names:

• Downing: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstByFeld(start_coop_prob: float = 1.0,
end_coop_prob: float = 0.5,
rounds_of_decay: int = 200)

Submitted to Axelrod’s first tournament by Scott Feld.

The description written in [Axelrod1980] is:

> “This rule starts with tit for tat and gradually lowers its probability of > cooperation following the other’s
cooperation to .5 by the two hundredth > move. It always defects after a defection by the other.”

This strategy plays Tit For Tat, always defecting if the opponent defects but cooperating when the opponent
cooperates with a gradually decreasing probability until it is only .5. Note that the description does not clearly
indicate how the cooperation probability should drop. This implements a linear decreasing function.

This strategy came 11th in Axelrod’s original tournament.

Names:

• Feld: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstByGraaskamp(alpha: float = 0.05)
Submitted to Axelrod’s first tournament by James Graaskamp.

The description written in [Axelrod1980] is:

2.2. Reference 75

http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/notes/azhar-ipd-Oct19th.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/notes/azhar-ipd-Oct19th.pdf

Axelrod Documentation, Release 0.0.1

> “This rule plays tit for tat for 50 moves, defects on move 51, and then > plays 5 more moves of tit for tat. A
check is then made to see if the player > seems to be RANDOM, in which case it defects from then on. A check
is also > made to see if the other is TIT FOR TAT, ANALOGY (a program from the > preliminary tournament),
and its own twin, in which case it plays tit for > tat. Otherwise it randomly defects every 5 to 15 moves, hoping
that enough > trust has been built up so that the other player will not notice these > defections.:

This is implemented as:

1. Plays Tit For Tat for the first 50 rounds;

2. Defects on round 51;

3. Plays 5 further rounds of Tit For Tat;

4. A check is then made to see if the opponent is playing randomly in which case it defects for the rest of the
game. This is implemented with a chi squared test.

5. The strategy also checks to see if the opponent is playing Tit For Tat or a clone of itself. If so it plays Tit
For Tat. If not it cooperates and randomly defects every 5 to 15 moves.

Note that there is no information about ‘Analogy’ available thus Step 5 is a “best possible” interpretation of the
description in the paper. Furthermore the test for the clone is implemented as checking that both players have
played the same moves for the entire game. This is unlikely to be the original approach but no further details
are available.

This strategy came 9th in Axelrod’s original tournament.

Names:

• Graaskamp: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is the actual strategy

class axelrod.strategies.axelrod_first.FirstByGrofman
Submitted to Axelrod’s first tournament by Bernard Grofman.

The description written in [Axelrod1980] is:

> “If the players did different things on the previous move, this rule > cooperates with probability
2/7. Otherwise this rule always cooperates.”

This strategy came 4th in Axelrod’s original tournament.

Names:

• Grofman: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstByJoss(p: float = 0.9)
Submitted to Axelrod’s first tournament by Johann Joss.

The description written in [Axelrod1980] is:

> “This rule cooperates 90% of the time after a cooperation by the other. It > always defects after a defection by
the other.”

This strategy came 12th in Axelrod’s original tournament.

Names:

• Joss: [Axelrod1980]

• Hard Joss: [Stewart2012]

76 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.axelrod_first.FirstByNydegger
Submitted to Axelrod’s first tournament by Rudy Nydegger.

The description written in [Axelrod1980] is:

> “The program begins with tit for tat for the first three moves, except > that if it was the only one to cooperate
on the first move and the only one > to defect on the second move, it defects on the third move. After the third
> move, its choice is determined from the 3 preceding outcomes in the > following manner. Let A be the sum
formed by counting the other’s defection > as 2 points and one’s own as 1 point, and giving weights of 16, 4, and
1 to > the preceding three moves in chronological order. The choice can be > described as defecting only when
A equals 1, 6, 7, 17, 22, 23, 26, 29, 30, > 31, 33, 38, 39, 45, 49, 54, 55, 58, or 61. Thus if all three preceding
moves > are mutual defection, A = 63 and the rule cooperates. This rule was > designed for use in laboratory
experiments as a stooge which had a memory > and appeared to be trustworthy, potentially cooperative, but not
gullible > (Nydegger, 1978).”

The program begins with tit for tat for the first three moves, except that if it was the only one to cooperate on
the first move and the only one to defect on the second move, it defects on the third move. After the third move,
its choice is determined from the 3 preceding outcomes in the following manner.

𝐴 = 16𝑎1 + 4𝑎2 + 𝑎3

Where 𝑎𝑖 is dependent on the outcome of the previous 𝑖 th round. If both strategies defect, 𝑎𝑖 = 3, if the
opponent only defects: 𝑎𝑖 = 2 and finally if it is only this strategy that defects then 𝑎𝑖 = 1.

Finally this strategy defects if and only if:

𝐴 ∈ {1, 6, 7, 17, 22, 23, 26, 29, 30, 31, 33, 38, 39, 45, 49, 54, 55, 58, 61}

Thus if all three preceding moves are mutual defection, A = 63 and the rule cooperates. This rule was designed
for use in laboratory experiments as a stooge which had a memory and appeared to be trustworthy, potentially
cooperative, but not gullible.

This strategy came 3rd in Axelrod’s original tournament.

Names:

• Nydegger: [Axelrod1980]

static score_history(my_history: List[axelrod.action.Action], oppo-
nent_history: List[axelrod.action.Action], score_map:
Dict[Tuple[axelrod.action.Action, axelrod.action.Action], int]) →
int

Implements the Nydegger formula A = 16 a_1 + 4 a_2 + a_3

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstByShubik
Submitted to Axelrod’s first tournament by Martin Shubik.

The description written in [Axelrod1980] is:

> “This rule cooperates until the other defects, and then defects once. If > the other defects again after the rule’s
cooperation is resumed, the rule > defects twice. In general, the length of retaliation is increased by one for
> each departure from mutual cooperation. This rule is described with its > strategic implications in Shubik
(1970). Further treatment of its is given > in Taylor (1976).

There is some room for interpretation as to how the strategy reacts to a defection on the turn where it starts to
cooperate once more. In Shubik (1970) the strategy is described as:

> “I will play my move 1 to begin with and will continue to do so, so long > as my information shows that the
other player has chosen his move 1. If my > information tells me he has used move 2, then I will use move 2 for

2.2. Reference 77

Axelrod Documentation, Release 0.0.1

the > immediate k subsequent periods, after which I will resume using move 1. If > he uses his move 2 again
after I have resumed using move 1, then I will > switch to move 2 for the k + 1 immediately subsequent periods
. . . and so > on, increasing my retaliation by an extra period for each departure from the > (1, 1) steady state.”

This is interpreted as:

The player cooperates, if when it is cooperating, the opponent defects it defects for k rounds. After k rounds it
starts cooperating again and increments the value of k if the opponent defects again.

This strategy came 5th in Axelrod’s original tournament.

Names:

• Shubik: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_first.FirstBySteinAndRapoport(alpha: float =
0.05)

Submitted to Axelrod’s first tournament by William Stein and Amnon Rapoport.

The description written in [Axelrod1980] is:

> “This rule plays tit for tat except that it cooperates on the first four > moves, it defects on the last two moves,
and every fifteen moves it checks > to see if the opponent seems to be playing randomly. This check uses a >
chi-squared test of the other’s transition probabilities and also checks for > alternating moves of CD and DC.

This is implemented as follows:

1. It cooperates for the first 4 moves.

2. It defects on the last 2 moves.

3. Every 15 moves it makes use of a chi-squared test to check if the opponent is playing randomly. If so it
defects.

This strategy came 6th in Axelrod’s original tournament.

Names:

• SteinAndRapoport: [Axelrod1980]

original_class
alias of FirstBySteinAndRapoport

class axelrod.strategies.axelrod_first.FirstByTidemanAndChieruzzi
Submitted to Axelrod’s first tournament by Nicolas Tideman and Paula Chieruzzi.

The description written in [Axelrod1980] is:

> “This rule begins with cooperation and tit for tat. However, when the > other player finishes his second run
of defec- tions, an extra punishment is > instituted, and the number of punishing defections is increased by one
with > each run of the other’s defections. The other player is given a fresh start > if he is 10 or more points
behind, if he has not just started a run of > defections, if it has been at least 20 moves since a fresh start, if there
> are at least 10 moves remaining, and if the number of defections differs > from a 50-50 random generator by
at least 3.0 standard deviations. A fresh > start involves two cooperations and then play as if the game had just
> started. The program defects automatically on the last two moves.”

This is interpreted as:

1. Every run of defections played by the opponent increases the number of defections that this strategy retaliates
with by 1.

2. The opponent is given a ‘fresh start’ if:

78 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Chi-squared_test

Axelrod Documentation, Release 0.0.1

• it is 10 points behind this strategy

• and it has not just started a run of defections

• and it has been at least 20 rounds since the last ‘fresh start’

• and there are more than 10 rounds remaining in the match

• and the total number of defections differs from a 50-50 random sample by at least 3.0 standard
deviations.

A ‘fresh start’ is a sequence of two cooperations followed by an assumption that the game has just
started (everything is forgotten).

3. The strategy defects on the last two moves.

This strategy came 2nd in Axelrod’s original tournament.

Names:

• TidemanAndChieruzzi: [Axelrod1980]

original_class
alias of FirstByTidemanAndChieruzzi

class axelrod.strategies.axelrod_first.FirstByTullock
Submitted to Axelrod’s first tournament by Gordon Tullock.

The description written in [Axelrod1980] is:

> “This rule cooperates on the first eleven moves. It then cooperates 10% > less than the other player has
cooperated on the preceding ten moves. This > rule is based on an idea developed in Overcast and Tullock
(1971). Professor > Tullock was invited to specify how the idea could be implemented, and he did > so out of
scientific interest rather than an expectation that it would be a > likely winner.”

This is interpreted as:

Cooperates for the first 11 rounds then randomly cooperates 10% less often than the opponent has in the previous
10 rounds.

This strategy came 13th in Axelrod’s original tournament.

Names:

• Tullock: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

Strategies from Axelrod’s second tournament. All strategies in this module are prefixed by SecondBy to indicate that
they were submitted in Axelrod’s Second tournament by the given author.

class axelrod.strategies.axelrod_second.SecondByAppold
Strategy submitted to Axelrod’s second tournament by Scott Appold (K88R) and came in 22nd in that tourna-
ment.

Cooperates for first four turns.

After four turns, will cooperate immediately following the first time the opponent cooperates (starting with the
opponent’s fourth move). Otherwise will cooperate with probability equal to:

• If this strategy defected two turns ago, the portion of the time (historically) that the opponent followed a
defection with a cooperation.

• If this strategy cooperated two turns ago, the portion of the time (historically) that the opponent followed
a cooperation with a cooperation. The opponent’s first move is counted as a response to a cooperation.

2.2. Reference 79

Axelrod Documentation, Release 0.0.1

Names:

• Appold: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByBlack
Strategy submitted to Axelrod’s second tournament by Paul E Black (K83R) and came in fifteenth in that tour-
nament.

The strategy Cooperates for the first five turns. Then it calculates the number of opponent defects in the last five
moves and Cooperates with probability prob_coop‘[‘number_defects], where:

prob_coop[number_defects] = 1 - (number_defects^ 2 - 1) / 25

Names:

• Black: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByBorufsen
Strategy submitted to Axelrod’s second tournament by Otto Borufsen (K32R), and came in third in that tourna-
ment.

This player keeps track of the the opponent’s responses to own behavior:

• cd_count counts: Opponent cooperates as response to player defecting.

• cc_count counts: Opponent cooperates as response to player cooperating.

The player has a defect mode and a normal mode. In defect mode, the player will always defect. In normal
mode, the player obeys the following ranked rules:

1. If in the last three turns, both the player/opponent defected, then cooperate for a single turn.

2. If in the last three turns, the player/opponent acted differently from each other and they’re alternating, then
change next defect to cooperate. (Doesn’t block third rule.)

3. Otherwise, do tit-for-tat.

Start in normal mode, but every 25 turns starting with the 27th turn, re-evaluate the mode. Enter defect mode if
any of the following conditions hold:

• Detected random: Opponent cooperated 7-18 times since last mode evaluation (or start) AND less than
70% of opponent cooperation was in response to player’s cooperation, i.e. cc_count / (cc_count+cd_count)
< 0.7

• Detect defective: Opponent cooperated fewer than 3 times since last mode evaluation.

When switching to defect mode, defect immediately. The first two rules for normal mode require that last three
turns were in normal mode. When starting normal mode from defect mode, defect on first move.

Names:

• Borufsen: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

try_return(to_return)
We put the logic here to check for the flip_next_defect bit here, and proceed like normal otherwise.

80 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.axelrod_second.SecondByCave
Strategy submitted to Axelrod’s second tournament by Rob Cave (K49R), and came in fourth in that tournament.

First look for overly-defective or apparently random opponents, and defect if found. That is any opponent
meeting one of:

• turn > 39 and percent defects > 0.39

• turn > 29 and percent defects > 0.65

• turn > 19 and percent defects > 0.79

Otherwise, respond to cooperation with cooperation. And respond to defcts with either a defect (if opponent has
defected at least 18 times) or with a random (50/50) choice. [Cooperate on first.]

Names:

• Cave: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByChampion
Strategy submitted to Axelrod’s second tournament by Danny Champion.

This player cooperates on the first 10 moves and plays Tit for Tat for the next 15 more moves. After 25 moves,
the program cooperates unless all the following are true: the other player defected on the previous move, the
other player cooperated less than 60% and the random number between 0 and 1 is greater that the other player’s
cooperation rate.

Names:

• Champion: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByColbert
Strategy submitted to Axelrod’s second tournament by William Colbert (K51R) and came in eighteenth in that
tournament.

In the first eight turns, this strategy Coopearates on all but the sixth turn, in which it Defects. After that, the
strategy responds to an opponent Cooperation with a single Cooperation, and responds to a Defection with a
chain of responses: Defect, Defect, Cooperate, Cooperate. During this chain, the strategy ignores opponent’s
moves.

Names:

• Colbert: [Axelrod1980b]

class axelrod.strategies.axelrod_second.SecondByEatherley
Strategy submitted to Axelrod’s second tournament by Graham Eatherley.

A player that keeps track of how many times in the game the other player defected. After the other player
defects, it defects with a probability equal to the ratio of the other’s total defections to the total moves to that
point.

Names:

• Eatherley: [Axelrod1980b]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

2.2. Reference 81

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.axelrod_second.SecondByGetzler
Strategy submitted to Axelrod’s second tournament by Abraham Getzler (K35R) and came in eleventh in that
tournament.

Strategy Defects with probability flack, where flack is calculated as the sum over opponent Defections of 0.5 ^
(turns ago Defection happened).

Names:

• Getzler: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByGladstein
Submitted to Axelrod’s second tournament by David Gladstein.

This strategy is also known as Tester and is based on the reverse engineering of the Fortran strategies from
Axelrod’s second tournament.

This strategy is a TFT variant that defects on the first round in order to test the opponent’s response. If the
opponent ever defects, the strategy ‘apologizes’ by cooperating and then plays TFT for the rest of the game.
Otherwise, it defects as much as possible subject to the constraint that the ratio of its defections to moves
remains under 0.5, not counting the first defection.

Names:

• Gladstein: [Axelrod1980b]

• Tester: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByGraaskampKatzen
Strategy submitted to Axelrod’s second tournament by Jim Graaskamp and Ken Katzen (K60R), and came in
sixth in that tournament.

Play Tit-for-Tat at first, and track own score. At select checkpoints, check for a high score. Switch to Default
Mode if:

• On move 11, score < 23

• On move 21, score < 53

• On move 31, score < 83

• On move 41, score < 113

• On move 51, score < 143

• On move 101, score < 293

Once in Defect Mode, defect forever.

Names:

• GraaskampKatzen: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByGrofman
Submitted to Axelrod’s second tournament by Bernard Grofman.

This strategy has 3 phases:

82 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

1. First it cooperates on the first two rounds

2. For rounds 3-7 inclusive, it plays the same as the opponent’s last move

3. Thereafter, it applies the following logic, looking at its memory of the last 8* rounds (ignoring the most
recent round).

• If its own previous move was C and the opponent has defected less than 3 times in the last 8* rounds,
cooperate

• If its own previous move was C and the opponent has defected 3 or more times in the last 8* rounds, defect

• If its own previous move was D and the opponent has defected only once or not at all in the last 8* rounds,
cooperate

• If its own previous move was D and the opponent has defected more than once in the last 8* rounds, defect

* The code looks at the first 7 of the last 8 rounds, ignoring the most recent round.

Names: - Grofman’s strategy: [Axelrod1980b] - K86R: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByHarrington
Strategy submitted to Axelrod’s second tournament by Paul Harrington (K75R) and came in eighth in that
tournament.

This strategy has three modes: Normal, Fair-weather, and Defect. These mode names were not present in
Harrington’s submission.

In Normal and Fair-weather modes, the strategy begins by:

• Update history

• Try to detect random opponent if turn is multiple of 15 and >=30.

• Check if burned flag should be raised.

• Check for Fair-weather opponent if turn is 38.

Updating history means to increment the correct cell of the move_history. move_history is a matrix where the
columns are the opponent’s previous move and the rows are indexed by the combo of this player’s and the
opponent’s moves two turns ago. [The upper-left cell must be all Cooperations, but otherwise order doesn’t
matter.] After we enter Defect mode, move_history won’t be used again.

If the turn is a multiple of 15 and >=30, then attempt to detect random. If random is detected, enter Defect mode
and defect immediately. If the player was previously in Defect mode, then do not re-enter. The random detection
logic is a modified Pearson’s Chi Squared test, with some additional checks. [More details in detect_random
docstrings.]

Some of this player’s moves are marked as “generous.” If this player made a generous move two turns ago and
the opponent replied with a Defect, then raise the burned flag. This will stop certain generous moves later.

The player mostly plays Tit-for-Tat for the first 36 moves, then defects on the 37th move. If the opponent
cooperates on the first 36 moves, and defects on the 37th move also, then enter Fair-weather mode and cooperate
this turn. Entering Fair-weather mode is extremely rare, since this can only happen if the opponent cooperates
for the first 36 then defects unprovoked on the 37th. (That is, this player’s first 36 moves are also Cooperations,
so there’s nothing really to trigger an opponent Defection.)

Next in Normal Mode:

1. Check for defect and parity streaks.

2.2. Reference 83

Axelrod Documentation, Release 0.0.1

2. Check if cooperations are scheduled.

3. Otherwise,

• If turn < 37, Tit-for-Tat.

• If turn = 37, defect, mark this move as generous, and schedule two more cooperations**.

• If turn > 37, then if burned flag is raised, then Tit-for-Tat. Otherwise, Tit-for-Tat with probability 1 - prob.
And with probability prob, defect, schedule two cooperations, mark this move as generous, and increase
prob by 5%.

** Scheduling two cooperations means to set more_coop flag to two. If in Normal mode and no streaks are
detected, then the player will cooperate and lower this flag, until hitting zero. It’s possible that the flag can be
overwritten. Notable on the 37th turn defect, this is set to two, but the 38th turn Fair-weather check will set this.

If the opponent’s last twenty moves were defections, then defect this turn. Then check for a parity streak, by
flipping the parity bit (there are two streaks that get tracked which are something like odd and even turns, but this
flip bit logic doesn’t get run every turn), then incrementing the parity streak that we’re pointing to. If the parity
streak that we’re pointing to is then greater than parity_limit then reset the streak and cooperate immediately.
parity_limit is initially set to five, but after it has been hit eight times, it decreases to three. The parity streak
that we’re pointing to also gets incremented if in normal mode and we defect but not on turn 38, unless we are
defecting as the result of a defect streak. Note that the parity streaks resets but the defect streak doesn’t.

If more_coop >= 1, then we cooperate and lower that flag here, in Normal mode after checking streaks. Still
lower this flag if cooperating as the result of a parity streak or in Fair-weather mode.

Then use the logic based on turn from above.

In Fair-Weather mode after running the code from above, check if opponent defected last turn. If so, exit Fair-
Weather mode, and proceed THIS TURN with Normal mode. Otherwise cooperate.

In Defect mode, update the exit_defect_meter (originally zero) by incrementing if opponent defected last turn
and decreasing by three otherwise. If exit_defect_meter is then 11, then set mode to Normal (for future turns),
cooperate and schedule two more cooperations. [Note that this move is not marked generous.]

Names:

• Harrington: [Axelrod1980b]

calculate_chi_squared(turn)
Pearson’s Chi Squared statistic = sum[(E_i-O_i)^2 / E_i], where O_i are the observed matrix values, and
E_i is calculated as number (of defects) in the row times the number in the column over (total number in
the matrix minus 1). Equivalently, we expect we expect (for an independent distribution) the total number
of recorded turns times the portion in that row times the portion in that column.

In this function, the statistic is non-standard in that it excludes summands where E_i <= 1.

detect_parity_streak(last_move)
Switch which parity_streak we’re pointing to and incerement if the opponent’s last move was a Defection.
Otherwise reset the flag. Then return true if and only if the parity_streak is at least parity_limit.

This is similar to detect_streak with alternating streaks, except that these streaks get incremented elsewhere
as well.

detect_random(turn)
We check if the top-left cell of the matrix (corresponding to all Cooperations) has over 80% of the turns.
In which case, we label non-random.

Then we check if over 75% or under 25% of the opponent’s turns are Defections. If so, then we label as
non-random.

84 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

Otherwise we calculates a modified Pearson’s Chi Squared statistic on self.history, and returns True (is
random) if and only if the statistic is less than or equal to 3.

detect_streak(last_move)
Return true if and only if the opponent’s last twenty moves are defects.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

try_return(to_return, lower_flags=True, inc_parity=False)
This will return to_return, with some end-of-turn logic.

class axelrod.strategies.axelrod_second.SecondByKluepfel
Strategy submitted to Axelrod’s second tournament by Charles Kluepfel (K32R).

This player keeps track of the the opponent’s responses to own behavior:

• cd_count counts: Opponent cooperates as response to player defecting.

• dd_count counts: Opponent defects as response to player defecting.

• cc_count counts: Opponent cooperates as response to player cooperating.

• dc_count counts: Opponent defects as response to player cooperating.

After 26 turns, the player then tries to detect a random player. The player decides that the opponent
is random if cd_counts >= (cd_counts+dd_counts)/2 - 0.75*sqrt(cd_counts+dd_counts) AND cc_counts >=
(dc_counts+cc_counts)/2 - 0.75*sqrt(dc_counts+cc_counts). If the player decides that they are playing against
a random player, then they will always defect.

Otherwise respond to recent history using the following set of rules:

• If opponent’s last three choices are the same, then respond in kind.

• If opponent’s last two choices are the same, then respond in kind with probability 90%.

• Otherwise if opponent’s last action was to cooperate, then cooperate with probability 70%.

• Otherwise if opponent’s last action was to defect, then defect with probability 60%.

Names:

• Kluepfel: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByLeyvraz
Strategy submitted to Axelrod’s second tournament by Fransois Leyvraz (K68R) and came in twelfth in that
tournament.

The strategy uses the opponent’s last three moves to decide on an action based on the following ordered rules.

1. If opponent Defected last two turns, then Defect with prob 75%.

2. If opponent Defected three turns ago, then Cooperate.

3. If opponent Defected two turns ago, then Defect.

4. If opponent Defected last turn, then Defect with prob 50%.

5. Otherwise (all Cooperations), then Cooperate.

Names:

• Leyvraz: [Axelrod1980b]

2.2. Reference 85

Axelrod Documentation, Release 0.0.1

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByMikkelson
Strategy submitted to Axelrod’s second tournament by Ray Mikkelson (K66R) and came in twentieth in that
tournament.

The strategy keeps track of a variable called credit, which determines if the strategy will Cooperate, in the
sense that if credit is positive, then the strategy Cooperates. credit is initialized to 7. After the first turn, credit
increments if the opponent Cooperated last turn, and decreases by two otherwise. credit is capped above by 8
and below by -7. [credit is assessed as postive or negative, after increasing based on opponent’s last turn.]

If credit is non-positive within the first ten turns, then the strategy Defects and credit is set to 4. If credit is
non-positive later, then the strategy Defects if and only if (total # opponent Defections) / (turn#) is at least 15%.
[Turn # starts at 1.]

Names:

• Mikkelson: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByRichardHufford
Strategy submitted to Axelrod’s second tournament by Richard Hufford (K47R) and came in sixteenth in that
tournament.

The strategy tracks opponent “agreements”, that is whenever the opponent’s previous move is the some as this
player’s move two turns ago. If the opponent’s first move is a Defection, this is counted as a disagreement, and
otherwise an agreement. From the agreement counts, two measures are calculated:

• proportion_agree: This is the number of agreements (through opponent’s last turn) + 2 divided by the
current turn number.

• last_four_num: The number of agreements in the last four turns. If there have been fewer than four
previous turns, then this is number of agreement + (4 - number of past turns).

We then use these measures to decide how to play, using these rules:

1. If proportion_agree > 0.9 and last_four_num >= 4, then Cooperate.

2. Otherwise if proportion_agree >= 0.625 and last_four_num >= 2, then Tit-for-Tat.

3. Otherwise, Defect.

However, if the opponent has Cooperated the last streak_needed turns, then the strategy deviates from the
usual strategy, and instead Defects. (We call such deviation an “aberration”.) In the turn immediately after an
aberration, the strategy doesn’t override, even if there’s a streak of Cooperations. Two turns after an aberra-
tion, the strategy: Restarts the Cooperation streak (never looking before this turn); Cooperates; and changes
streak_needed to:

floor(20.0 * num_abb_def / num_abb_coop) + 1

Here num_abb_def is 2 + the number of times that the opponent Defected in the turn after an aberration, and
num_abb_coop is 2 + the number of times that the opponent Cooperated in response to an aberration.

Names:

• RichardHufford: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

86 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.axelrod_second.SecondByRowsam
Strategy submitted to Axelrod’s second tournament by Glen Rowsam (K58R) and came in 21st in that tourna-
ment.

The strategy starts in Normal mode, where it cooperates every turn. Every six turns it checks the score per turn.
[Rather the score of all previous turns divided by the turn number, which will be one more than the number
of turns scored.] If this measure is less than 2.5 (the strategy is doing badly) and it increases distrust_points.
distrust_points is a variable that starts at 0; if it ever exceeds 6 points, the strategy will enter Defect mode and
defect from then on. It will increase distrust_points depending on the precise score per turn according to:

• 5 points if score per turn is less than 1.0

• 3 points if score per turn is less than 1.5, but at least 1.0

• 2 points if score per turn is less than 2.0, but at least 1.5

• 1 points if score per turn is less than 2.5, but at least 2.0

If distrust_points are increased, then the strategy defects on that turn, then cooperates and defects on the next
two turns. [Unless distrust_points exceeds 6 points, then it will enter Defect mode immediately.]

Every 18 turns in Normal mode, the strategy will decrement distrust_score if it’s more than 3. This represents a
wearing off effect of distrust.

Names:

• Rowsam: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByTester
Submitted to Axelrod’s second tournament by David Gladstein.

This strategy is a TFT variant that attempts to exploit certain strategies. It defects on the first move. If the oppo-
nent ever defects, TESTER ‘apologies’ by cooperating and then plays TFT for the rest of the game. Otherwise
TESTER alternates cooperation and defection.

This strategy came 46th in Axelrod’s second tournament.

Names:

• Tester: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByTidemanAndChieruzzi
Strategy submitted to Axelrod’s second tournament by T. Nicolaus Tideman and Paula Chieruzzi (K84R) and
came in ninth in that tournament.

This strategy Cooperates if this player’s score exceeds the opponent’s score by at least score_to_beat.
score_to_beat starts at zero and increases by score_to_beat_inc every time the opponent’s last two moves are a
Cooperation and Defection in that order. score_to_beat_inc itself increase by 5 every time the opponent’s last
two moves are a Cooperation and Defection in that order.

Additionally, the strategy executes a “fresh start” if the following hold:

• The strategy would Defect by score (difference less than score_to_beat)

• The opponent did not Cooperate and Defect (in order) in the last two turns.

• It’s been at least 10 turns since the last fresh start. Or since the match started if there hasn’t been a fresh
start yet.

2.2. Reference 87

Axelrod Documentation, Release 0.0.1

A “fresh start” entails two Cooperations and resetting scores, scores_to_beat and scores_to_beat_inc.

Names:

• TidemanAndChieruzzi: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByTranquilizer
Submitted to Axelrod’s second tournament by Craig Feathers

Description given in Axelrod’s “More Effective Choice in the Prisoner’s Dilemma” paper: The rule normally
cooperates but is ready to defect if the other player defects too often. Thus the rule tends to cooperate for the
first dozen or two moves if the other player is cooperating, but then it throws in a defection. If the other player
continues to cooperate, then defections become more frequent. But as long as Tranquilizer is maintaining an
average payoff of at least 2.25 points per move, it will never defect twice in succession and it will not defect
more than one-quarter of the time.

This implementation is based on the reverse engineering of the Fortran strategy K67R from Axelrod’s second
tournament. Reversed engineered by: Owen Campbell, Will Guo and Mansour Hakem.

The strategy starts by cooperating and has 3 states.

At the start of the strategy it updates its states:

• It counts the number of consecutive defections by the opponent.

• If it was in state 2 it moves to state 0 and calculates the following quantities
two_turns_after_good_defection_ratio and two_turns_after_good_defection_ratio_count.

Formula for:

two_turns_after_good_defection_ratio:

self.two_turns_after_good_defection_ratio = (((self.two_turns_after_good_defection_ratio *
self.two_turns_after_good_defection_ratio_count) + (3 - (3 * self.dict[opponent.history[-1]])) +
(2 * self.dict[self.history[-1]]) - ((self.dict[opponent.history[-1]] * self.dict[self.history[-1]]))) /
(self.two_turns_after_good_defection_ratio_count + 1))

two_turns_after_good_defection_ratio_count = two_turns_after_good_defection_ratio + 1

• If it was in state 1 it moves to state 2 and calculates the following quantities
one_turn_after_good_defection_ratio and one_turn_after_good_defection_ratio_count.

Formula for:

one_turn_after_good_defection_ratio:

self.one_turn_after_good_defection_ratio = (((self.one_turn_after_good_defection_ratio *
self.one_turn_after_good_defection_ratio_count) + (3 - (3 * self.dict[opponent.history[-1]])) +
(2 * self.dict[self.history[-1]]) - (self.dict[opponent.history[-1]] * self.dict[self.history[-1]])) /
(self.one_turn_after_good_defection_ratio_count + 1))

one_turn_after_good_defection_ratio_count:

one_turn_after_good_defection_ratio_count = one_turn_after_good_defection_ratio + 1

If after this it is in state 1 or 2 then it cooperates.

If it is in state 0 it will potentially perform 1 of the 2 following stochastic tests:

1. If average score per turn is greater than 2.25 then it calculates a value of probability:

probability = ((.95 - (((self.one_turn_after_good_defection_ratio) + (self.two_turns_after_good_defection_ratio)
- 5) / 15)) + (1 / (((len(self.history))+1) ** 2)) - (self.dict[opponent.history[-1]] / 4))

88 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

and will cooperate if a random sampled number is less than that value of probability. If it does not cooperate
then the strategy moves to state 1 and defects.

2. If average score per turn is greater than 1.75 but less than 2.25 then it calculates a value of probability:

probability = ((.25 + ((opponent.cooperations + 1) / ((len(self.history)) + 1))) -
(self.opponent_consecutive_defections * .25) + ((current_score[0] - current_score[1]) / 100) + (4 /
((len(self.history)) + 1)))

and will cooperate if a random sampled number is less than that value of probability. If not, it defects.

If none of the above holds the player simply plays tit for tat.

Tranquilizer came in 27th place in Axelrod’s second torunament.

Names:

• Tranquilizer: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

update_state(opponent)
Calculates the ratio values for the one_turn_after_good_defection_ratio,
two_turns_after_good_defection_ratio and the probability values, and sets the value of
num_turns_after_good_defection.

class axelrod.strategies.axelrod_second.SecondByWeiner
Strategy submitted to Axelrod’s second tournament by Herb Weiner (K41R), and came in seventh in that tour-
nament.

Play Tit-for-Tat with a chance for forgiveness and a defective override.

The chance for forgiveness happens only if forgive_flag is raised (flag discussed below). If raised and turn
is greater than grudge, then override Tit-for-Tat with Cooperation. grudge is a variable that starts at 0 and
increments 20 with each forgiven Defect (a Defect that is overriden through the forgiveness logic). forgive_flag
is lower whether logic is overriden or not.

The variable defect_padding increments with each opponent Defect, but resets to zero with each opponent
Cooperate (or forgive_flag lowering) so that it roughly counts Defects between Cooperates. Whenever the
opponent Cooperates, if defect_padding (before reseting) is odd, then we raise forgive_flag for next turn.

Finally a defective override is assessed after forgiveness. If five or more of the opponent’s last twelve actions
are Defects, then Defect. This will overrule a forgiveness, but doesn’t undo the lowering of forgiveness_flag.
Note that “last twelve actions” doesn’t count the most recent action. Actually the original code updates history
after checking for defect override.

Names:

• Weiner: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

try_return(to_return)
We put the logic here to check for the defective override.

class axelrod.strategies.axelrod_second.SecondByWhite
Strategy submitted to Axelrod’s second tournament by Edward C White (K72R) and came in thirteenth in that
tournament.

• If the opponent Cooperated last turn or in the first ten turns, then Cooperate.

• Otherwise Defect if and only if: floor(log(turn)) * opponent Defections >= turn

2.2. Reference 89

Axelrod Documentation, Release 0.0.1

Names:

• White: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByWmAdams
Strategy submitted to Axelrod’s second tournament by William Adams (K44R), and came in fifth in that tour-
nament.

Count the number of opponent defections after their first move, call c_defect. Defect if c_defect equals 4, 7, or 9.
If c_defect > 9, then defect immediately after opponent defects with probability = (0.5)^(c_defect-1). Otherwise
cooperate.

Names:

• WmAdams: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.axelrod_second.SecondByYamachi
Strategy submitted to Axelrod’s second tournament by Brian Yamachi (K64R) and came in seventeenth in that
tournament.

The strategy keeps track of play history through a variable called count_them_us_them, which is a dict indexed
by (X, Y, Z), where X is an opponent’s move and Y and Z are the following moves by this player and the
opponent, respectively. Each turn, we look at our opponent’s move two turns ago, call X, and our move last
turn, call Y. If (X, Y, C) has occurred more often (or as often) as (X, Y, D), then Cooperate. Otherwise Defect.
[Note that this reflects likelihood of Cooperations or Defections in opponent’s previous move; we don’t update
count_them_us_them with previous move until next turn.]

Starting with the 41st turn, there’s a possibility to override this behavior. If portion_defect is between 45% and
55% (exclusive), then Defect, where portion_defect equals number of opponent defects plus 0.5 divided by the
turn number (indexed by 1). When overriding this way, still record count_them_us_them as though the strategy
didn’t override.

Names:

• Yamachi: [Axelrod1980b]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

try_return(to_return, opp_def)
Return to_return, unless the turn is greater than 40 AND portion_defect is between 45% and 55%.

In this case, still record the history as to_return so that the modified behavior doesn’t affect the calculation
of count_us_them_us.

class axelrod.strategies.backstabber.BackStabber
Forgives the first 3 defections but on the fourth will defect forever. Defects on the last 2 rounds unconditionally.

Names:

• Backstabber: Original name by Thomas Campbell

original_class
alias of BackStabber

class axelrod.strategies.backstabber.DoubleCrosser
Forgives the first 3 defections but on the fourth will defect forever. Defects on the last 2 rounds unconditionally.

90 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

If 8 <= current round <= 180, if the opponent did not defect in the first 7 rounds, the player will only defect after
the opponent has defected twice in-a-row.

Names:

• Double Crosser: Original name by Thomas Campbell

original_class
alias of DoubleCrosser

class axelrod.strategies.better_and_better.BetterAndBetter
Defects with probability of ‘(1000 - current turn) / 1000’. Therefore it is less and less likely to defect as the
round goes on.

Names:

• Better and Better: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.bush_mosteller.BushMosteller(c_prob: float = 0.5,
d_prob: float = 0.5, as-
piration_level_divider: float
= 3.0, learning_rate: float =
0.5)

A player that is based on Bush Mosteller reinforced learning algorithm, it decides what it will play only depend-
ing on its own previous payoffs.

The probability of playing C or D will be updated using a stimulus which represents a win or a loss of value
based on its previous play’s payoff in the specified probability. The more a play will be rewarded through
rounds, the more the player will be tempted to use it.

Names:

• Bush Mosteller: [Luis2008]

stimulus_update(opponent: axelrod.player.Player)
Updates the stimulus attribute based on the opponent’s history. Used by the strategy.

Parameters

opponent [axelrod.Player] The current opponent

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.calculator.Calculator
Plays like (Hard) Joss for the first 20 rounds. If periodic behavior is detected, defect forever. Otherwise play
TFT.

Names:

• Calculator: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.cooperator.Cooperator
A player who only ever cooperates.

Names:

• Cooperator: [Axelrod1984]

• ALLC: [Press2012]

2.2. Reference 91

Axelrod Documentation, Release 0.0.1

• Always cooperate: [Mittal2009]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.cooperator.TrickyCooperator
A cooperator that is trying to be tricky.

Names:

• Tricky Cooperator: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Almost always cooperates, but will try to trick the opponent by defecting.

Defect once in a while in order to get a better payout. After 3 rounds, if opponent has not defected to a
max history depth of 10, defect.

class axelrod.strategies.cycler.AntiCycler
A player that follows a sequence of plays that contains no cycles: CDD CD CCD CCCD CCCCD . . .

Names:

• Anti Cycler: Original name by Marc Harper

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.cycler.Cycler(cycle: str = ’CCD’)
A player that repeats a given sequence indefinitely.

Names:

• Cycler: Original name by Marc Harper

set_cycle(cycle: str)
Set or change the cycle.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.cycler.CyclerCCCCCD
Cycles C, C, C, C, C, D

Names:

• Cycler CCCD: Original name by Marc Harper

class axelrod.strategies.cycler.CyclerCCCD
Cycles C, C, C, D

Names:

• Cycler CCCD: Original name by Marc Harper

class axelrod.strategies.cycler.CyclerCCCDCD
Cycles C, C, C, D, C, D

Names:

• Cycler CCCDCD: Original name by Marc Harper

class axelrod.strategies.cycler.CyclerCCD
Cycles C, C, D

Names:

92 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

• Cycler CCD: Original name by Marc Harper

• Periodic player CCD: [Mittal2009]

class axelrod.strategies.cycler.CyclerDC
Cycles D, C

Names:

• Cycler DC: Original name by Marc Harper

class axelrod.strategies.cycler.CyclerDDC
Cycles D, D, C

Names:

• Cycler DDC: Original name by Marc Harper

• Periodic player DDC: [Mittal2009]

class axelrod.strategies.cycler.EvolvableCycler(cycle: str = None, cycle_length: int
= None, mutation_probability: float =
0.2, mutation_potency: int = 1)

Evolvable version of Cycler.

crossover(other)→ axelrod.evolvable_player.EvolvablePlayer
Creates and returns a new Player instance with a single crossover point.

mutate()→ axelrod.evolvable_player.EvolvablePlayer
Basic mutation which may change any random actions in the sequence.

The player class in this module does not obey standard rules of the IPD (as indicated by their classifier). We do not
recommend putting a lot of time in to optimising it.

class axelrod.strategies.darwin.Darwin
A strategy which accumulates a record (the ‘genome’) of what the most favourable response in the previous
round should have been, and naively assumes that this will remain the correct response at the same round of
future trials.

This ‘genome’ is preserved between opponents, rounds and repetitions of the tournament. It becomes a charac-
teristic of the type and so a single version of this is shared by all instances for each loading of the class.

As this results in information being preserved between tournaments, this is classified as a cheating strategy!

If no record yet exists, the opponent’s response from the previous round is returned.

Names:

• Darwin: Original name by Paul Slavin

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

mutate(outcome: tuple, trial: int)→ None
Select response according to outcome.

reset()
Reset instance properties.

static reset_genome()→ None
For use in testing methods.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

2.2. Reference 93

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.dbs.DBS(discount_factor=0.75, promotion_threshold=3, viola-
tion_threshold=4, reject_threshold=3, tree_depth=5)

A strategy that learns the opponent’s strategy and uses symbolic noise detection for detecting whether anomalies
in player’s behavior are deliberate or accidental. From the learned opponent’s strategy, a tree search is used to
choose the best move.

Default values for the parameters are the suggested values in the article. When noise increases you can try to
diminish violation_threshold and rejection_threshold.

Names

• Desired Belief Strategy: [Au2006]

compute_prob_rule(outcome, alpha=1)
Uses the game history to compute the probability of the opponent playing C, in the outcome situation
(example: outcome = (C, C)). When alpha = 1, the results is approximately equal to the frequency of the
occurrence of outcome C. alpha is a discount factor that gives more weight to recent events than earlier
ones.

Parameters

outcome: tuple of two actions.Action alpha: int, optional. Discount factor. Default is 1.

should_demote(r_minus, violation_threshold=4)
Checks if the number of successive violations of a deterministic rule (in the opponent’s behavior) exceeds
the user-defined violation_threshold.

should_promote(r_plus, promotion_threshold=3)
This function determines if the move r_plus is a deterministic behavior of the opponent, and then returns
True, or if r_plus is due to a random behavior (or noise) which would require a probabilistic rule, in which
case it returns False.

To do so it looks into the game history: if the k last times when the opponent was in the same situation
than in r_plus it played the same thing then then r_plus is considered as a deterministic rule (where K is
the user-defined promotion_threshold).

Parameters

r_plus: tuple of (tuple of actions.Action, actions.Action) example: ((C, C), D) r_plus represents one
outcome of the history, and the following move played by the opponent.

promotion_threshold: int, optional Number of successive observations needed to promote an opponent
behavior as a deterministic rule. Default is 3.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

update_history_by_cond(opponent_history)
Updates self.history_by_cond between each turns of the game.

class axelrod.strategies.dbs.DeterministicNode(action1, action2, depth)
Nodes (C, C), (C, D), (D, C), or (D, D) with deterministic choice for siblings.

get_siblings(policy)
Returns the siblings node of the current DeterministicNode. Builds 2 siblings (C, X) and (D, X) that are
StochasticNodes. Those siblings are of the same depth as the current node. Their probabilities pC are
defined by the policy argument.

is_stochastic()
Returns True if self is a StochasticNode.

94 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.dbs.Node
Nodes used to build a tree for the tree-search procedure. The tree has Deterministic and Stochastic nodes, as the
opponent’s strategy is learned as a probability distribution.

class axelrod.strategies.dbs.StochasticNode(own_action, pC, depth)
Node that have a probability pC to get to each sibling. A StochasticNode can be written (C, X) or (D, X), with
X = C with a probability pC, else X = D.

get_siblings()
Returns the siblings node of the current StochasticNode. There are two siblings which are Deterministic-
Nodes, their depth is equal to current node depth’s + 1.

is_stochastic()
Returns True if self is a StochasticNode.

axelrod.strategies.dbs.create_policy(pCC, pCD, pDC, pDD)
Creates a dict that represents a Policy. As defined in the reference, a Policy is a set of (prev_move, p) where p is
the probability to cooperate after prev_move, where prev_move can be (C, C), (C, D), (D, C) or (D, D).

Parameters

pCC, pCD, pDC, pDD [float] Must be between 0 and 1.

axelrod.strategies.dbs.minimax_tree_search(begin_node, policy, max_depth)
Tree search function (minimax search procedure) for the tree (built by recursion) corresponding to the oppo-
nent’s policy, and solves it. Returns a tuple of two floats that are the utility of playing C, and the utility of
playing D.

axelrod.strategies.dbs.move_gen(outcome, policy, depth_search_tree=5)
Returns the best move considering opponent’s policy and last move, using tree-search procedure.

class axelrod.strategies.defector.Defector
A player who only ever defects.

Names:

• Defector: [Axelrod1984]

• ALLD: [Press2012]

• Always defect: [Mittal2009]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.defector.TrickyDefector
A defector that is trying to be tricky.

Names:

• Tricky Defector: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Almost always defects, but will try to trick the opponent into cooperating.

Defect if opponent has cooperated at least once in the past and has defected for the last 3 turns in a row.

class axelrod.strategies.doubler.Doubler
Cooperates except when the opponent has defected and the opponent’s cooperation count is less than twice their
defection count.

Names:

• Doubler: [Prison1998]

2.2. Reference 95

Axelrod Documentation, Release 0.0.1

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.finite_state_machines.EvolvableFSMPlayer(transitions:
tuple =
None, ini-
tial_state:
int =
None, ini-
tial_action:
axel-
rod.action.Action
= None,
num_states:
int = None,
muta-
tion_probability:
float = 0.1)

Abstract base class for evolvable finite state machine players.

create_vector_bounds()
Creates the bounds for the decision variables.

crossover(other)
Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.

mutate()
Optional method to allow Player to produce a variant (not in place).

classmethod normalize_transitions(transitions: Sequence[Sequence[T_co]]) → Tu-
ple[Tuple[Any, ...], ...]

Translate a list of lists to a tuple of tuples.

receive_vector(vector)
Read a serialized vector into the set of FSM parameters (less initial state). Then assign those FSM param-
eters to this class instance.

The vector has three parts. The first is used to define the next state (for each of the player’s states - for each
opponents action).

The second part is the player’s next moves (for each state - for each opponent’s actions).

Finally, a probability to determine the player’s first move.

class axelrod.strategies.finite_state_machines.EvolvedFSM16
A 16 state FSM player trained with an evolutionary algorithm.

Names:

• Evolved FSM 16: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.EvolvedFSM16Noise05
A 16 state FSM player trained with an evolutionary algorithm with noisy matches (noise=0.05).

Names:

• Evolved FSM 16 Noise 05: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.EvolvedFSM4
A 4 state FSM player trained with an evolutionary algorithm.

Names:

96 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

• Evolved FSM 4: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.FSMPlayer(transitions: Tu-
ple[Tuple[int, axel-
rod.action.Action, int,
axelrod.action.Action],
...] = ((1, C, 1, C), (1,
D, 1, D)), initial_state:
int = 1, initial_action:
axelrod.action.Action =
C)

Abstract base class for finite state machine players.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.finite_state_machines.Fortress3
Finite state machine player specified in http://DOI.org/10.1109/CEC.2006.1688322.

Note that the description in http://www.graham-kendall.com/papers/lhk2011.pdf is not correct.

Names:

• Fortress 3: [Ashlock2006b]

class axelrod.strategies.finite_state_machines.Fortress4
Finite state machine player specified in http://DOI.org/10.1109/CEC.2006.1688322.

Note that the description in http://www.graham-kendall.com/papers/lhk2011.pdf is not correct.

Names:

• Fortress 4: [Ashlock2006b]

class axelrod.strategies.finite_state_machines.Predator
Finite state machine player specified in http://DOI.org/10.1109/CEC.2006.1688322.

Names:

• Predator: [Ashlock2006b]

class axelrod.strategies.finite_state_machines.Pun1
FSM player described in [Ashlock2006].

Names:

• Pun1: [Ashlock2006]

class axelrod.strategies.finite_state_machines.Raider
FSM player described in http://DOI.org/10.1109/FOCI.2014.7007818.

Names

• Raider: [Ashlock2014]

class axelrod.strategies.finite_state_machines.Ripoff
FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

Names

• Ripoff: [Ashlock2008]

class axelrod.strategies.finite_state_machines.SimpleFSM(transitions: tuple, ini-
tial_state: int)

Simple implementation of a finite state machine that transitions between states based on the last round of play.

2.2. Reference 97

http://DOI.org/10.1109/CEC.2006.1688322
http://www.graham-kendall.com/papers/lhk2011.pdf
http://DOI.org/10.1109/CEC.2006.1688322
http://www.graham-kendall.com/papers/lhk2011.pdf
http://DOI.org/10.1109/CEC.2006.1688322
http://DOI.org/10.1109/FOCI.2014.7007818
http://DOI.org/10.1109/TEVC.2008.920675

Axelrod Documentation, Release 0.0.1

https://en.wikipedia.org/wiki/Finite-state_machine

move(opponent_action: axelrod.action.Action)→ axelrod.action.Action
Computes the response move and changes state.

num_states()
Return the number of states of the machine.

class axelrod.strategies.finite_state_machines.SolutionB1
FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

Names

• Solution B1: [Ashlock2015]

class axelrod.strategies.finite_state_machines.SolutionB5
FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

Names

• Solution B5: [Ashlock2015]

class axelrod.strategies.finite_state_machines.TF1
A FSM player trained to maximize Moran fixation probabilities.

Names:

• TF1: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.TF2
A FSM player trained to maximize Moran fixation probabilities.

Names:

• TF2: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.TF3
A FSM player trained to maximize Moran fixation probabilities.

Names:

• TF3: Original name by Marc Harper

class axelrod.strategies.finite_state_machines.Thumper
FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

Names

• Thumper: [Ashlock2008]

class axelrod.strategies.finite_state_machines.UsuallyCooperates
This strategy cooperates except after a C following a D.

Names:

• Usually Cooperates (UC): [Ashlock2009]

class axelrod.strategies.finite_state_machines.UsuallyDefects
This strategy defects except after a D following a C.

Names:

• Usually Defects (UD): [Ashlock2009]

class axelrod.strategies.forgiver.Forgiver
A player starts by cooperating however will defect if at any point the opponent has defected more than 10 percent
of the time

98 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Finite-state_machine
http://DOI.org/10.1109/TCIAIG.2014.2326012
http://DOI.org/10.1109/TCIAIG.2014.2326012
http://DOI.org/10.1109/TEVC.2008.920675

Axelrod Documentation, Release 0.0.1

Names:

• Forgiver: Original name by Thomas Campbell

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D if the opponent has defected more than 10 percent of the time.

class axelrod.strategies.forgiver.ForgivingTitForTat
A player starts by cooperating however will defect if at any point, the opponent has defected more than 10
percent of the time, and their most recent decision was defect.

Names:

• Forgiving Tit For Tat: Original name by Thomas Campbell

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D if the opponent has defected more than 10 percent of the time and their
most recent decision was defect.

Stochastic variants of Lookup table based-strategies, trained with particle swarm algorithms.

For the original see: https://gist.github.com/GDKO/60c3d0fd423598f3c4e4

class axelrod.strategies.gambler.EvolvableGambler(lookup_dict: dict = None, ini-
tial_actions: tuple = None, pat-
tern: Any = None, parameters:
axelrod.strategies.lookerup.Plays =
None, mutation_probability: float =
None)

create_vector_bounds()
Creates the bounds for the decision variables. Ignores extra parameters.

receive_vector(vector)
Receives a vector and updates the player’s pattern. Ignores extra parameters.

class axelrod.strategies.gambler.Gambler(lookup_dict: dict = None, initial_actions: tuple
= None, pattern: Any = None, parameters: axel-
rod.strategies.lookerup.Plays = None)

A stochastic version of LookerUp which will select randomly an action in some cases.

Names:

• Gambler: Original name by Georgios Koutsovoulos

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.gambler.PSOGambler1_1_1
A 1x1x1 PSOGambler trained with pyswarm.

Names:

• PSO Gambler 1_1_1: Original name by Marc Harper

class axelrod.strategies.gambler.PSOGambler2_2_2
A 2x2x2 PSOGambler trained with a particle swarm algorithm (implemented in pyswarm). Original version by
Georgios Koutsovoulos.

Names:

• PSO Gambler 2_2_2: Original name by Marc Harper

2.2. Reference 99

https://gist.github.com/GDKO/60c3d0fd423598f3c4e4

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.gambler.PSOGambler2_2_2_Noise05
A 2x2x2 PSOGambler trained with pyswarm with noise=0.05.

Names:

• PSO Gambler 2_2_2 Noise 05: Original name by Marc Harper

class axelrod.strategies.gambler.PSOGamblerMem1
A 1x1x0 PSOGambler trained with pyswarm. This is the ‘optimal’ memory one strategy trained against the set
of short run time strategies in the Axelrod library.

Names:

• PSO Gambler Mem1: Original name by Marc Harper

class axelrod.strategies.gambler.ZDMem2
A memory two generalization of a zero determinant player.

Names:

• ZDMem2: Original name by Marc Harper

• Unnamed [LiS2014]

The player classes in this module do not obey standard rules of the IPD (as indicated by their classifier). We do not
recommend putting a lot of time in to optimising them.

class axelrod.strategies.geller.Geller
Observes what the player will do in the next round and adjust.

If unable to do this: will play randomly.

This code is inspired by Matthew Williams’ talk “Cheating at rock-paper-scissors — meta-programming in
Python” given at Django Weekend Cardiff in February 2014.

His code is here: https://github.com/mattjw/rps_metaprogramming and there’s some more info here: http://
www.mattjw.net/2014/02/rps-metaprogramming/

This code is way simpler than Matt’s, as in this exercise we already have access to the opponent instance, so
don’t need to go hunting for it in the stack. Instead we can just call it to see what it’s going to play, and return a
result based on that

This is almost certainly cheating, and more than likely against the spirit of the ‘competition’ :-)

Names:

• Geller: Original name by Martin Chorley (@martinjc)

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Look at what the opponent will play in the next round and choose a strategy that gives the least jail time,
which is is equivalent to playing the same strategy as that which the opponent will play.

class axelrod.strategies.geller.GellerCooperator
Observes what the player will do (like Geller) but if unable to will cooperate.

Names:

• Geller Cooperator: Original name by Karol Langner

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

100 Chapter 2. Table of Contents

https://github.com/mattjw/rps_metaprogramming
http://www.mattjw.net/2014/02/rps-metaprogramming/
http://www.mattjw.net/2014/02/rps-metaprogramming/

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.geller.GellerDefector
Observes what the player will do (like Geller) but if unable to will defect.

Names:

• Geller Defector: Original name by Karol Langner

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

class axelrod.strategies.gobymajority.GoByMajority(memory_depth: Union[int, float]
= inf, soft: bool = True)

Submitted to Axelrod’s second tournament by Gail Grisell. It came 23rd and was written in 10 lines of BASIC.

A player examines the history of the opponent: if the opponent has more defections than cooperations then the
player defects.

In case of equal number of defections and cooperations this player will Cooperate. Passing the soft=False
keyword argument when initialising will create a HardGoByMajority which Defects in case of equality.

An optional memory attribute will limit the number of turns remembered (by default this is 0)

Names:

• Go By Majority: [Axelrod1984]

• Grisell: [Axelrod1980b]

• Soft Majority: [Mittal2009]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is affected by the history of the opponent.

As long as the opponent cooperates at least as often as they defect then the player will cooperate. If at any
point the opponent has more defections than cooperations in memory the player defects.

class axelrod.strategies.gobymajority.GoByMajority10
GoByMajority player with a memory of 10.

Names:

• Go By Majority 10: Original name by Karol Langner

class axelrod.strategies.gobymajority.GoByMajority20
GoByMajority player with a memory of 20.

Names:

• Go By Majority 20: Original name by Karol Langner

class axelrod.strategies.gobymajority.GoByMajority40
GoByMajority player with a memory of 40.

Names:

• Go By Majority 40: Original name by Karol Langner

class axelrod.strategies.gobymajority.GoByMajority5
GoByMajority player with a memory of 5.

Names:

• Go By Majority 5: Original name by Karol Langner

2.2. Reference 101

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.gobymajority.HardGoByMajority(memory_depth: Union[int,
float] = inf)

A player examines the history of the opponent: if the opponent has more defections than cooperations then the
player defects. In case of equal number of defections and cooperations this player will Defect.

An optional memory attribute will limit the number of turns remembered (by default this is 0)

Names:

• Hard Majority: [Mittal2009]

class axelrod.strategies.gobymajority.HardGoByMajority10
HardGoByMajority player with a memory of 10.

Names:

• Hard Go By Majority 10: Original name by Karol Langner

class axelrod.strategies.gobymajority.HardGoByMajority20
HardGoByMajority player with a memory of 20.

Names:

• Hard Go By Majority 20: Original name by Karol Langner

class axelrod.strategies.gobymajority.HardGoByMajority40
HardGoByMajority player with a memory of 40.

Names:

• Hard Go By Majority 40: Original name by Karol Langner

class axelrod.strategies.gobymajority.HardGoByMajority5
HardGoByMajority player with a memory of 5.

Names:

• Hard Go By Majority 5: Original name by Karol Langner

class axelrod.strategies.gradualkiller.GradualKiller
It begins by defecting in the first five moves, then cooperates two times. It then defects all the time if the
opponent has defected in move 6 and 7, else cooperates all the time. Initially designed to stop Gradual from
defeating TitForTat in a 3 Player tournament.

Names

• Gradual Killer: [Prison1998]

original_class
alias of GradualKiller

class axelrod.strategies.grudger.Aggravater
Grudger, except that it defects on the first 3 turns

Names

• Aggravater: Original name by Thomas Campbell

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.grudger.EasyGo
A player starts by defecting however will cooperate if at any point the opponent has defected.

Names:

• Easy Go: [Prison1998]

102 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

• Reverse Grudger (RGRIM): [Li2011]

• Fool Me Forever: [Harper2017]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing D, then plays C for the remaining rounds if the opponent ever plays D.

class axelrod.strategies.grudger.ForgetfulGrudger
A player starts by cooperating however will defect if at any point the opponent has defected, but forgets after
mem_length matches.

Names:

• Forgetful Grudger: Original name by Geraint Palmer

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for mem_length rounds if the opponent ever plays D.

class axelrod.strategies.grudger.GeneralSoftGrudger(n: int = 1, d: int = 4, c: int = 2)
A generalization of the SoftGrudger strategy. SoftGrudger punishes by playing: D, D, D, D, C, C. after a
defection by the opponent. GeneralSoftGrudger only punishes after its opponent defects a specified amount of
times consecutively. The punishment is in the form of a series of defections followed by a ‘penance’ of a series
of consecutive cooperations.

Names:

• General Soft Grudger: Original Name by J. Taylor Smith

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Punishes after its opponent defects ‘n’ times consecutively. The punishment is in the form of ‘d’ defections
followed by a penance of ‘c’ consecutive cooperations.

class axelrod.strategies.grudger.Grudger
A player starts by cooperating however will defect if at any point the opponent has defected.

This strategy came 7th in Axelrod’s original tournament.

Names:

• Friedman’s strategy: [Axelrod1980]

• Grudger: [Li2011]

• Grim: [Berg2015]

• Grim Trigger: [Banks1990]

• Spite: [Beaufils1997]

• Vengeful: [Ashlock2009]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for the remaining rounds if the opponent ever plays D.

class axelrod.strategies.grudger.GrudgerAlternator
A player starts by cooperating until the first opponents defection, then alternates D-C.

Names:

• c_then_per_dc: [Prison1998]

• Grudger Alternator: Original name by Geraint Palmer

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays Alternator for the remaining rounds if the opponent ever plays D.

2.2. Reference 103

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.grudger.OppositeGrudger
A player starts by defecting however will cooperate if at any point the opponent has cooperated.

Names:

• Opposite Grudger: Original name by Geraint Palmer

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing D, then plays C for the remaining rounds if the opponent ever plays C.

class axelrod.strategies.grudger.SoftGrudger
A modification of the Grudger strategy. Instead of punishing by always defecting: punishes by playing: D, D,
D, D, C, C. (Will continue to cooperate afterwards).

• Soft Grudger (SGRIM): [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D, D, D, D, C, C against a defection

class axelrod.strategies.grumpy.Grumpy(starting_state: str = ’Nice’, grumpy_threshold: int
= 10, nice_threshold: int = -10)

A player that defects after a certain level of grumpiness. Grumpiness increases when the opponent defects and
decreases when the opponent co-operates.

Names:

• Grumpy: Original name by Jason Young

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
A player that gets grumpier the more the opposition defects, and nicer the more they cooperate.

Starts off Nice, but becomes grumpy once the grumpiness threshold is hit. Won’t become nice once that
grumpy threshold is hit, but must reach a much lower threshold before it becomes nice again.

class axelrod.strategies.handshake.Handshake(initial_plays: List[axelrod.action.Action] =
None)

Starts with C, D. If the opponent plays the same way, cooperate forever, else defect forever.

Names:

• Handshake: [Robson1990]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hmm.EvolvableHMMPlayer(transitions_C=None, tran-
sitions_D=None, emis-
sion_probabilities=None, ini-
tial_state=0, initial_action=C,
num_states=None, muta-
tion_probability=None)

Evolvable version of HMMPlayer.

create_vector_bounds()
Creates the bounds for the decision variables.

crossover(other)
Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.

mutate()
Optional method to allow Player to produce a variant (not in place).

104 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

receive_vector(vector)
Read a serialized vector into the set of HMM parameters (less initial state). Then assign those HMM
parameters to this class instance.

Assert that the vector has the right number of elements for an HMMParams class with self.num_states.

Assume the first num_states^2 entries are the transitions_C matrix. The next num_states^2 entries are the
transitions_D matrix. Then the next num_states entries are the emission_probabilities vector. Finally the
last entry is the initial_action.

class axelrod.strategies.hmm.EvolvedHMM5
An HMM-based player with five hidden states trained with an evolutionary algorithm.

Names:

• Evolved HMM 5: Original name by Marc Harper

class axelrod.strategies.hmm.HMMPlayer(transitions_C=None, transitions_D=None, emis-
sion_probabilities=None, initial_state=0, ini-
tial_action=C)

Abstract base class for Hidden Markov Model players.

Names

• HMM Player: Original name by Marc Harper

is_stochastic()→ bool
Determines if the player is stochastic.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hmm.SimpleHMM(transitions_C, transitions_D, emis-
sion_probabilities, initial_state)

Implementation of a basic Hidden Markov Model. We assume that the transition matrix is conditioned on
the opponent’s last action, so there are two transition matrices. Emission distributions are stored as Bernoulli
probabilities for each state. This is essentially a stochastic FSM.

https://en.wikipedia.org/wiki/Hidden_Markov_model

is_well_formed()→ bool

Determines if the HMM parameters are well-formed:

• Both matrices are stochastic

• Emissions probabilities are in [0, 1]

• The initial state is valid.

move(opponent_action: axelrod.action.Action)→ axelrod.action.Action
Changes state and computes the response action.

Parameters

opponent_action: Axelrod.Action The opponent’s last action.

axelrod.strategies.hmm.is_stochastic_matrix(m, ep=1e-08)→ bool
Checks that the matrix m (a list of lists) is a stochastic matrix.

axelrod.strategies.hmm.mutate_row(row, mutation_probability)
, crossover_lists_of_lists Given a row of probabilities, randomly change each entry with probability muta-
tion_probability (a value between 0 and 1). If changing, then change by a value randomly (uniformly) chosen
from [-0.25, 0.25] bounded by 0 and 100%.

2.2. Reference 105

https://en.wikipedia.org/wiki/Hidden_Markov_model

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.hunter.AlternatorHunter
A player who hunts for alternators.

Names:

• Alternator Hunter: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hunter.CooperatorHunter
A player who hunts for cooperators.

Names:

• Cooperator Hunter: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hunter.CycleHunter
Hunts strategies that play cyclically, like any of the Cyclers, Alternator, etc.

Names:

• Cycle Hunter: Original name by Marc Harper

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hunter.DefectorHunter
A player who hunts for defectors.

Names:

• Defector Hunter: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.hunter.EventualCycleHunter
Hunts strategies that eventually play cyclically.

Names:

• Eventual Cycle Hunter: Original name by Marc Harper

strategy(opponent: axelrod.player.Player)→ None
This is a placeholder strategy.

class axelrod.strategies.hunter.MathConstantHunter
A player who hunts for mathematical constant players.

Names:

Math Constant Hunter: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Check whether the number of cooperations in the first and second halves of the history are close. The
variance of the uniform distribution (1/4) is a reasonable delta but use something lower for certainty and
avoiding false positives. This approach will also detect a lot of random players.

class axelrod.strategies.hunter.RandomHunter
A player who hunts for random players.

Names:

106 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

• Random Hunter: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
A random player is unpredictable, which means the conditional frequency of cooperation after cooperation,
and defection after defections, should be close to 50%. . . although how close is debatable.

class axelrod.strategies.inverse.Inverse
A player who defects with a probability that diminishes relative to how long ago the opponent defected.

Names:

• Inverse: Original Name by Karol Langner

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Looks at opponent history to see if they have defected.

If so, player defection is inversely proportional to when this occurred.

class axelrod.strategies.lookerup.EvolvableLookerUp(lookup_dict: dict = None,
initial_actions: tuple =
None, pattern: Any =
None, parameters: axel-
rod.strategies.lookerup.Plays
= None, mutation_probability:
float = None)

crossover(other)
Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.

mutate()
Optional method to allow Player to produce a variant (not in place).

class axelrod.strategies.lookerup.EvolvedLookerUp1_1_1
A 1 1 1 Lookerup trained with an evolutionary algorithm.

Names:

• Evolved Lookerup 1 1 1: Original name by Marc Harper

class axelrod.strategies.lookerup.EvolvedLookerUp2_2_2
A 2 2 2 Lookerup trained with an evolutionary algorithm.

Names:

• Evolved Lookerup 2 2 2: Original name by Marc Harper

class axelrod.strategies.lookerup.LookerUp(lookup_dict: dict = None, initial_actions: tu-
ple = None, pattern: Any = None, parameters:
axelrod.strategies.lookerup.Plays = None)

This strategy uses a LookupTable to decide its next action. If there is not enough history to use the table, it calls
from a list of self.initial_actions.

if self_depth=2, op_depth=3, op_openings_depth=5, LookerUp finds the last 2 plays of self, the last 3 plays
of opponent and the opening 5 plays of opponent. It then looks those up on the LookupTable and returns the
appropriate action. If 5 rounds have not been played (the minimum required for op_openings_depth), it calls
from self.initial_actions.

LookerUp can be instantiated with a dictionary. The dictionary uses tuple(tuple, tuple, tuple) or Plays as keys.
for example.

• self_plays: depth=2

• op_plays: depth=1

2.2. Reference 107

Axelrod Documentation, Release 0.0.1

• op_openings: depth=0:

{Plays((C, C), (C), ()): C,
Plays((C, C), (D), ()): D,
Plays((C, D), (C), ()): D, <- example below
Plays((C, D), (D), ()): D,
Plays((D, C), (C), ()): C,
Plays((D, C), (D), ()): D,
Plays((D, D), (C), ()): C,
Plays((D, D), (D), ()): D}

From the above table, if the player last played C, D and the opponent last played C (here the initial opponent
play is ignored) then this round, the player would play D.

The dictionary must contain all possible permutations of C’s and D’s.

LookerUp can also be instantiated with pattern=str/tuple of actions, and:

parameters=Plays(
self_plays=player_depth: int,
op_plays=op_depth: int,
op_openings=op_openings_depth: int)

It will create keys of len=2 ** (sum(parameters)) and map the pattern to the keys.

initial_actions is a tuple such as (C, C, D). A table needs initial actions equal to max(self_plays depth, op-
ponent_plays depth, opponent_initial_plays depth). If provided initial_actions is too long, the extra will be
ignored. If provided initial_actions is too short, the shortfall will be made up with C’s.

Some well-known strategies can be expressed as special cases; for example Cooperator is given by the dict (All
history is ignored and always play C):

{Plays((), (), ()) : C}

Tit-For-Tat is given by (The only history that is important is the opponent’s last play.):

{Plays((), (D,), ()): D,
Plays((), (C,), ()): C}

LookerUp’s LookupTable defaults to Tit-For-Tat. The initial_actions defaults to playing C.

Names:

• Lookerup: Original name by Martin Jones

lookup_table_display(sort_by: tuple = (’op_openings’, ’self_plays’, ’op_plays’))→ str
Returns a string for printing lookup_table info in specified order.

Parameters sort_by – only_elements=’self_plays’, ‘op_plays’, ‘op_openings’

strategy(opponent: axelrod.player.Player)→ Reaction
This is a placeholder strategy.

class axelrod.strategies.lookerup.LookupTable(lookup_dict: dict)
LookerUp and its children use this object to determine their next actions.

It is an object that creates a table of all possible plays to a specified depth and the action to be returned for each
combination of plays. The “get” method returns the appropriate response. For the table containing:

108 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

....
Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, C): D
Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, D): C
...

with: player.history[-2:]=[C, C] and opponent.history[-2:]=[C, D] and opponent.history[:2]=[D, D], calling
LookupTable.get(plays=(C, C), op_plays=(C, D), op_openings=(D, D)) will return C.

Instantiate the table with a lookup_dict. This is {(self_plays_tuple, op_plays_tuple, op_openings_tuple): action,
. . . }. It must contain every possible permutation with C’s and D’s of the above tuple. so:

good_dict = {((C,), (C,), ()): C,
((C,), (D,), ()): C,
((D,), (C,), ()): D,
((D,), (D,), ()): C}

bad_dict = {((C,), (C,), ()): C,
((C,), (D,), ()): C,
((D,), (C,), ()): D}

LookupTable.from_pattern() creates an ordered list of keys for you and maps the pattern to the keys.:

LookupTable.from_pattern(pattern=(C, D, D, C),
player_depth=0, op_depth=1, op_openings_depth=1

)

creates the dictionary:

{Plays(self_plays=(), op_plays=(C), op_openings=(C)): C,
Plays(self_plays=(), op_plays=(C), op_openings=(D)): D,
Plays(self_plays=(), op_plays=(D), op_openings=(C)): D,
Plays(self_plays=(), op_plays=(D), op_openings=(D)): C,}

and then returns a LookupTable with that dictionary.

display(sort_by: tuple = (’op_openings’, ’self_plays’, ’op_plays’))→ str
Returns a string for printing lookup_table info in specified order.

Parameters sort_by – only_elements=’self_plays’, ‘op_plays’, ‘op_openings’

class axelrod.strategies.lookerup.Plays(self_plays, op_plays, op_openings)

op_openings
Alias for field number 2

op_plays
Alias for field number 1

self_plays
Alias for field number 0

class axelrod.strategies.lookerup.Winner12
A lookup table based strategy.

Names:

• Winner12: [Mathieu2015]

class axelrod.strategies.lookerup.Winner21
A lookup table based strategy.

2.2. Reference 109

Axelrod Documentation, Release 0.0.1

Names:

• Winner21: [Mathieu2015]

axelrod.strategies.lookerup.create_lookup_table_keys(player_depth: int, op_depth:
int, op_openings_depth: int)
→ list

Returns a list of Plays that has all possible permutations of C’s and D’s for each specified depth. the list is in
order, C < D sorted by ((player_tuple), (op_tuple), (op_openings_tuple)). create_lookup_keys(2, 1, 0) returns:

[Plays(self_plays=(C, C), op_plays=(C,), op_openings=()),
Plays(self_plays=(C, C), op_plays=(D,), op_openings=()),
Plays(self_plays=(C, D), op_plays=(C,), op_openings=()),
Plays(self_plays=(C, D), op_plays=(D,), op_openings=()),
Plays(self_plays=(D, C), op_plays=(C,), op_openings=()),
Plays(self_plays=(D, C), op_plays=(D,), op_openings=()),
Plays(self_plays=(D, D), op_plays=(C,), op_openings=()),
Plays(self_plays=(D, D), op_plays=(D,), op_openings=())]

axelrod.strategies.lookerup.get_last_n_plays(player: axelrod.player.Player, depth: int)
→ tuple

Returns the last N plays of player as a tuple.

axelrod.strategies.lookerup.make_keys_into_plays(lookup_table: dict)→ dict
Returns a dict where all keys are Plays.

class axelrod.strategies.mathematicalconstants.CotoDeRatio
The player will always aim to bring the ratio of co-operations to defections closer to the ratio as given in a sub
class

Names:

• Co to Do Ratio: Original Name by Timothy Standen

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.mathematicalconstants.Golden
The player will always aim to bring the ratio of co-operations to defections closer to the golden mean

Names:

• Golden: Original Name by Timothy Standen

class axelrod.strategies.mathematicalconstants.Pi
The player will always aim to bring the ratio of co-operations to defections closer to the pi

Names:

• Pi: Original Name by Timothy Standen

class axelrod.strategies.mathematicalconstants.e
The player will always aim to bring the ratio of co-operations to defections closer to the e

Names:

• e: Original Name by Timothy Standen

Memory Two strategies.

class axelrod.strategies.memorytwo.AON2
AON2 a memory two strategy introduced in [Hilbe2017]. It belongs to the AONk (all-or-none) family of strate-
gies. These strategies were designed to satisfy the three following properties:

110 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

1. Mutually Cooperative. A strategy is mutually cooperative if there are histories for which the strategy pre-
scribes to cooperate, and if it continues to cooperate after rounds with mutual cooperation (provided the last k
actions of the focal player were actually consistent).

2. Error correcting. A strategy is error correcting after at most k rounds if, after any history, it generally takes a
group of players at most k + 1 rounds to re-establish mutual cooperation.

3. Retaliating. A strategy is retaliating for at least k rounds if, after rounds in which the focal player cooperated
while the coplayer defected, the strategy responds by defecting the following k rounds.

In [Hilbe2017] the following vectors are reported as “equivalent” to AON2 with their respective self-cooperation
rate (note that these are not the same):

1. [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], self-cooperation rate: 0.952 2. [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1], self-cooperation rate: 0.951 3. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], self-cooperation rate: 0.951 4.
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1], self-cooperation rate: 0.952

AON2 is implemented using vector 1 due its self-cooperation rate.

In essence it is a strategy that starts off by cooperating and will cooperate again only after the states (CC, CC),
(CD, CD), (DC, DC), (DD, DD).

Names:

• AON2: [Hilbe2017]

class axelrod.strategies.memorytwo.DelayedAON1
Delayed AON1 a memory two strategy also introduced in [Hilbe2017] and belongs to the AONk family. Note
that AON1 is equivalent to Win Stay Lose Shift.

In [Hilbe2017] the following vectors are reported as “equivalent” to Delayed AON1 with their respective self-
cooperation rate (note that these are not the same):

1. [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], self-cooperation rate: 0.952 2. [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 1], self-cooperation rate: 0.970 3. [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1], self-cooperation rate: 0.971

Delayed AON1 is implemented using vector 3 due its self-cooperation rate.

In essence it is a strategy that starts off by cooperating and will cooperate again only after the states (CC, CC),
(CD, CD), (CD, DD), (DD, CD), (DC, DC) and (DD, DD).

Names:

• Delayed AON1: [Hilbe2017]

class axelrod.strategies.memorytwo.MEM2
A memory-two player that switches between TFT, TFTT, and ALLD.

Note that the reference claims that this is a memory two strategy but in fact it is infinite memory. This is because
the player plays as ALLD if ALLD has ever been selected twice, which can only be known if the entire history
of play is accessible.

Names:

• MEM2: [Li2014]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.memorytwo.MemoryTwoPlayer(sixteen_vector: Tuple[float,
...] = None, initial: axel-
rod.action.Action = C)

Uses a sixteen-vector for strategies based on the 16 conditional probabilities P(X | I,J,K,L) where X, I, J, K, L
in [C, D] and I, J are the players last two moves and K, L are the opponents last two moves. These conditional
probabilities are the following: 1. P(C|CC, CC) 2. P(C|CC, CD) 3. P(C|CC, DC) 4. P(C|CC, DD) 5. P(C|CD,

2.2. Reference 111

Axelrod Documentation, Release 0.0.1

CC) 6. P(C|CD, CD) 7. P(C|CD, DC) 8. P(C|CD, DD) 9. P(C|DC, CC) 10. P(C|DC, CD) 11. P(C|DC, DC) 12.
P(C|DC, DD) 13. P(C|DD, CC) 14. P(C|DD, CD) 15. P(C|DD, DC) 16. P(C|DD, DD)) Cooperator is set as the
default player if sixteen_vector is not given.

Names

• Memory Two: [Hilbe2017]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

Memory One strategies. Note that there are Memory One strategies in other files, including titfortat.py and
zero_determinant.py

class axelrod.strategies.memoryone.ALLCorALLD
This strategy is at the parameter extreme of the ZD strategies (phi = 0). It simply repeats its last move, and so
mimics ALLC or ALLD after round one. If the tournament is noisy, there will be long runs of C and D.

For now starting choice is random of 0.6, but that was an arbitrary choice at implementation time.

Names:

• ALLC or ALLD: Original name by Marc Harper

• Repeat: [Akin2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.memoryone.FirmButFair
A strategy that cooperates on the first move, and cooperates except after receiving a sucker payoff.

Names:

• Firm But Fair: [Frean1994]

class axelrod.strategies.memoryone.GTFT(p: float = None)
Generous Tit For Tat Strategy.

Names:

• Generous Tit For Tat: [Nowak1993]

• Naive peace maker: [Gaudesi2016]

• Soft Joss: [Gaudesi2016]

class axelrod.strategies.memoryone.MemoryOnePlayer(four_vector: Tuple[float, float,
float, float] = None, initial: axel-
rod.action.Action = C)

Uses a four-vector for strategies based on the last round of play, (P(C|CC), P(C|CD), P(C|DC), P(C|DD)). Win-
Stay Lose-Shift is set as the default player if four_vector is not given. Intended to be used as an abstract base
class or to at least be supplied with a initializing four_vector.

Names

• Memory One: [Nowak1990]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.memoryone.ReactivePlayer(probabilities: Tuple[float, float])
A generic reactive player. Defined by 2 probabilities conditional on the opponent’s last move: P(C|C), P(C|D).

Names:

• Reactive: [Nowak1989]

112 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.memoryone.SoftJoss(q: float = 0.9)
Defects with probability 0.9 when the opponent defects, otherwise emulates Tit-For-Tat.

Names:

• Soft Joss: [Prison1998]

class axelrod.strategies.memoryone.StochasticCooperator
Stochastic Cooperator.

Names:

• Stochastic Cooperator: [Adami2013]

class axelrod.strategies.memoryone.StochasticWSLS(ep: float = 0.05)
Stochastic WSLS, similar to Generous TFT. Note that this is not the same as Stochastic WSLS described in
[Amaral2016], that strategy is a modification of WSLS that learns from the performance of other strategies.

Names:

• Stochastic WSLS: Original name by Marc Harper

class axelrod.strategies.memoryone.WinShiftLoseStay(initial: axelrod.action.Action =
D)

Win-Shift Lose-Stay, also called Reverse Pavlov.

Names:

• WSLS: [Li2011]

class axelrod.strategies.memoryone.WinStayLoseShift(initial: axelrod.action.Action =
C)

Win-Stay Lose-Shift, also called Pavlov.

Names:

• Win Stay Lose Shift: [Nowak1993]

• WSLS: [Stewart2012]

• Pavlov: [Kraines1989]

class axelrod.strategies.meta.MemoryDecay(p_memory_delete: float = 0.1, p_memory_alter:
float = 0.03, loss_value: float = -2,
gain_value: float = 1, memory: list =
None, start_strategy: axelrod.player.Player =
<class ’axelrod.strategies.titfortat.TitForTat’>,
start_strategy_duration: int = 15)

A player utilizes the (default) Tit for Tat strategy for the first (default) 15 turns, at the same time memorizing the
opponent’s decisions. After the 15 turns have passed, the player calculates a ‘net cooperation score’ (NCS) for
their opponent, weighing decisions to Cooperate as (default) 1, and to Defect as (default) -2. If the opponent’s
NCS is below 0, the player defects; otherwise, they cooperate.

The player’s memories of the opponent’s decisions have a random chance to be altered (i.e., a C decision
becomes D or vice versa; default probability is 0.03) or deleted (default probability is 0.1).

It is possible to pass a different axelrod player class to change the initial player behavior.

Name: Memory Decay

gain_loss_translate()
Translates the actions (D and C) to numeric values (loss_value and gain_value).

memory_alter()
Alters memory entry, i.e. puts C if there’s a D and vice versa.

2.2. Reference 113

Axelrod Documentation, Release 0.0.1

memory_delete()
Deletes memory entry.

meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaHunter
A player who uses a selection of hunters.

Names

• Meta Hunter: Original name by Karol Langner

static meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaHunterAggressive(team=None)
A player who uses a selection of hunters.

Names

• Meta Hunter Aggressive: Original name by Marc Harper

static meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaMajority(team=None)
A player who goes by the majority vote of all other non-meta players.

Names:

• Meta Majority: Original name by Karol Langner

static meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaMajorityFiniteMemory
MetaMajority with the team of Finite Memory Players

Names

• Meta Majority Finite Memory: Original name by Marc Harper

class axelrod.strategies.meta.MetaMajorityLongMemory
MetaMajority with the team of Long (infinite) Memory Players

Names

• Meta Majority Long Memory: Original name by Marc Harper

class axelrod.strategies.meta.MetaMajorityMemoryOne
MetaMajority with the team of Memory One players

Names

• Meta Majority Memory One: Original name by Marc Harper

class axelrod.strategies.meta.MetaMinority(team=None)
A player who goes by the minority vote of all other non-meta players.

Names:

• Meta Minority: Original name by Karol Langner

static meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

114 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.meta.MetaMixer(team=None, distribution=None)
A player who randomly switches between a team of players. If no distribution is passed then the player will
uniformly choose between sub players.

In essence this is creating a Mixed strategy.

Parameters

team [list of strategy classes, optional] Team of strategies that are to be randomly played If none is passed will
select the ordinary strategies.

distribution [list representing a probability distribution, optional] This gives the distribution from which to
select the players. If none is passed will select uniformly.

Names

• Meta Mixer: Original name by Vince Knight

meta_strategy(results, opponent)
Using the numpy.random choice function to sample with weights

class axelrod.strategies.meta.MetaPlayer(team=None)
A generic player that has its own team of players.

Names:

• Meta Player: Original name by Karol Langner

meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

strategy(opponent)
This is a placeholder strategy.

class axelrod.strategies.meta.MetaWinner(team=None)
A player who goes by the strategy of the current winner.

Names:

• Meta Winner: Original name by Karol Langner

meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaWinnerDeterministic
Meta Winner with the team of Deterministic Players.

Names

• Meta Winner Deterministic: Original name by Marc Harper

class axelrod.strategies.meta.MetaWinnerEnsemble(team=None)
A variant of MetaWinner that chooses one of the top scoring strategies at random against each opponent. Note
this strategy is always stochastic regardless of the team.

Names:

• Meta Winner Ensemble: Original name by Marc Harper

meta_strategy(results, opponent)
Determine the meta result based on results of all players. Override this function in child classes.

class axelrod.strategies.meta.MetaWinnerFiniteMemory
MetaWinner with the team of Finite Memory Players

Names

2.2. Reference 115

Axelrod Documentation, Release 0.0.1

• Meta Winner Finite Memory: Original name by Marc Harper

class axelrod.strategies.meta.MetaWinnerLongMemory
MetaWinner with the team of Long (infinite) Memory Players

Names

• Meta Winner Long Memory: Original name by Marc Harper

class axelrod.strategies.meta.MetaWinnerMemoryOne
MetaWinner with the team of Memory One players

Names

• Meta Winner Memory Memory One: Original name by Marc Harper

class axelrod.strategies.meta.MetaWinnerStochastic
Meta Winner with the team of Stochastic Players.

Names

• Meta Winner Stochastic: Original name by Marc Harper

class axelrod.strategies.meta.NMWEDeterministic
Nice Meta Winner Ensemble with the team of Deterministic Players.

Names

• Nice Meta Winner Ensemble Deterministic: Original name by Marc Harper

class axelrod.strategies.meta.NMWEFiniteMemory
Nice Meta Winner Ensemble with the team of Finite Memory Players.

Names

• Nice Meta Winner Ensemble Finite Memory: Original name by Marc Harper

class axelrod.strategies.meta.NMWELongMemory
Nice Meta Winner Ensemble with the team of Long Memory Players.

Names

• Nice Meta Winner Ensemble Long Memory: Original name by Marc Harper

class axelrod.strategies.meta.NMWEMemoryOne
Nice Meta Winner Ensemble with the team of Memory One Players.

Names

• Nice Meta Winner Ensemble Memory One: Original name by Marc Harper

class axelrod.strategies.meta.NMWEStochastic
Nice Meta Winner Ensemble with the team of Stochastic Players.

Names

• Nice Meta Winner Ensemble Stochastic: Original name by Marc Harper

class axelrod.strategies.meta.NiceMetaWinner(team=None)
A player who goes by the strategy of the current winner.

Names:

• Meta Winner: Original name by Karol Langner

original_class
alias of MetaWinner

116 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.meta.NiceMetaWinnerEnsemble(team=None)
A variant of MetaWinner that chooses one of the top scoring strategies at random against each opponent. Note
this strategy is always stochastic regardless of the team.

Names:

• Meta Winner Ensemble: Original name by Marc Harper

original_class
alias of MetaWinnerEnsemble

class axelrod.strategies.mindcontrol.MindBender
A player that changes the opponent’s strategy by modifying the internal dictionary.

Names

• Mind Bender: Original name by Karol Langner

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.mindcontrol.MindController
A player that changes the opponents strategy to cooperate.

Names

• Mind Controller: Original name by Karol Langner

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Alters the opponents strategy method to be a lambda function which always returns C. This player will
then always return D to take advantage of this

class axelrod.strategies.mindcontrol.MindWarper
A player that changes the opponent’s strategy but blocks changes to its own.

Names

• Mind Warper: Original name by Karol Langner

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

The player classes in this module do not obey standard rules of the IPD (as indicated by their classifier). We do not
recommend putting a lot of time in to optimising them.

class axelrod.strategies.mindreader.MindReader
A player that looks ahead at what the opponent will do and decides what to do.

Names:

• Mind reader: Original name by Jason Young

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Pretends to play the opponent a number of times before each match. The primary purpose is to look far
enough ahead to see if a defect will be punished by the opponent.

class axelrod.strategies.mindreader.MirrorMindReader
A player that will mirror whatever strategy it is playing against by cheating and calling the opponent’s strategy
function instead of its own.

Names:

• Protected Mind reader: Original name by Brice Fernandes

2.2. Reference 117

Axelrod Documentation, Release 0.0.1

static foil_strategy_inspection()→ axelrod.action.Action
Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Will read the mind of the opponent and play the opponent’s strategy.

class axelrod.strategies.mindreader.ProtectedMindReader
A player that looks ahead at what the opponent will do and decides what to do. It is also protected from mind
control strategies

Names:

• Protected Mind reader: Original name by Jason Young

class axelrod.strategies.mutual.Desperate
A player that only cooperates after mutual defection.

Names:

• Desperate: [Berg2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.mutual.Hopeless
A player that only defects after mutual cooperation.

Names:

• Hopeless: [Berg2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.mutual.Willing
A player that only defects after mutual defection.

Names:

• Willing: [Berg2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.negation.Negation
A player starts by cooperating or defecting randomly if it’s their first move, then simply doing the opposite of
the opponents last move thereafter.

Names:

• Negation: [PD2017]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.oncebitten.FoolMeOnce
Forgives one D then retaliates forever on a second D.

Names:

• Fool me once: Original name by Marc Harper

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

118 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.oncebitten.ForgetfulFoolMeOnce(forget_probability: float =
0.05)

Forgives one D then retaliates forever on a second D. Sometimes randomly forgets the defection count, and so
keeps a secondary count separate from the standard count in Player.

Names:

• Forgetful Fool Me Once: Original name by Marc Harper

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.oncebitten.OnceBitten
Cooperates once when the opponent defects, but if they defect twice in a row defaults to forgetful grudger for
10 turns defecting.

Names:

• Once Bitten: Original name by Holly Marissa

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for mem_length rounds if the opponent ever plays D twice in a row.

class axelrod.strategies.prober.CollectiveStrategy
Defined in [Li2009]. ‘It always cooperates in the first move and defects in the second move. If the opponent
also cooperates in the first move and defects in the second move, CS will cooperate until the opponent defects.
Otherwise, CS will always defect.’

Names:

• Collective Strategy: [Li2009]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.Detective(initial_actions: List[axelrod.action.Action] =
None)

Starts with C, D, C, C, or with the given sequence of actions. If the opponent defects at least once in the first
fixed rounds, play as TFT forever, else defect forever.

Names:

• Detective: [NC2019]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.HardProber
Plays D, D, C, C initially. Defects forever if opponent cooperated in moves 2 and 3. Otherwise plays TFT.

Names:

• Hard Prober: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.NaiveProber(p: float = 0.1)
Like tit-for-tat, but it occasionally defects with a small probability.

Names:

• Naive Prober: [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

2.2. Reference 119

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.prober.Prober
Plays D, C, C initially. Defects forever if opponent cooperated in moves 2 and 3. Otherwise plays TFT.

Names:

• Prober: [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.Prober2
Plays D, C, C initially. Cooperates forever if opponent played D then C in moves 2 and 3. Otherwise plays TFT.

Names:

• Prober 2: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.Prober3
Plays D, C initially. Defects forever if opponent played C in moves 2. Otherwise plays TFT.

Names:

• Prober 3: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.Prober4
Plays C, C, D, C, D, D, D, C, C, D, C, D, C, C, D, C, D, D, C, D initially. Counts retaliating and provocative
defections of the opponent. If the absolute difference between the counts is smaller or equal to 2, defects forever.
Otherwise plays C for the next 5 turns and TFT for the rest of the game.

Names:

• Prober 4: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.prober.RemorsefulProber(p: float = 0.1)
Like Naive Prober, but it remembers if the opponent responds to a random defection with a defection by being
remorseful and cooperating.

For reference see: [Li2011]. A more complete description is given in “The Selfish Gene” (https://books.google.
co.uk/books?id=ekonDAAAQBAJ):

“Remorseful Prober remembers whether it has just spontaneously defected, and whether the result was prompt
retaliation. If so, it ‘remorsefully’ allows its opponent ‘one free hit’ without retaliating.”

Names:

• Remorseful Prober: [Li2011]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.punisher.InversePunisher
An inverted version of Punisher. The player starts by cooperating however will defect if at any point the opponent
has defected, and forgets after mem_length matches, with 1 <= mem_length <= 20. This time mem_length is
proportional to the amount of time the opponent has played C.

Names:

120 Chapter 2. Table of Contents

https://books.google.co.uk/books?id=ekonDAAAQBAJ
https://books.google.co.uk/books?id=ekonDAAAQBAJ

Axelrod Documentation, Release 0.0.1

• Inverse Punisher: Original name by Geraint Palmer

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for an amount of rounds proportional to the opponents historical ‘%’ of
playing C if the opponent ever plays D.

class axelrod.strategies.punisher.LevelPunisher
A player starts by cooperating however, after 10 rounds will defect if at any point the number of defections by
an opponent is greater than 20%.

Names:

• Level Punisher: [Eckhart2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.punisher.Punisher
A player starts by cooperating however will defect if at any point the opponent has defected, but forgets after
meme_length matches, with 1<=mem_length<=20 proportional to the amount of time the opponent has played
D, punishing that player for playing D too often.

Names:

• Punisher: Original name by Geraint Palmer

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Begins by playing C, then plays D for an amount of rounds proportional to the opponents historical ‘%’ of
playing D if the opponent ever plays D

class axelrod.strategies.punisher.TrickyLevelPunisher
A player starts by cooperating however, after 10, 50 and 100 rounds will defect if at any point the percentage of
defections by an opponent is greater than 20%, 10% and 5% respectively.

Names:

• Tricky Level Punisher: [Eckhart2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.qlearner.ArrogantQLearner
A player who learns the best strategies through the q-learning algorithm.

This Q learner jumps to quick conclusions and cares about the future.

Names:

• Arrogant Q Learner: Original name by Geraint Palmer

class axelrod.strategies.qlearner.CautiousQLearner
A player who learns the best strategies through the q-learning algorithm.

This Q learner is slower to come to conclusions and wants to look ahead more.

Names:

• Cautious Q Learner: Original name by Geraint Palmer

class axelrod.strategies.qlearner.HesitantQLearner
A player who learns the best strategies through the q-learning algorithm.

This Q learner is slower to come to conclusions and does not look ahead much.

Names:

2.2. Reference 121

Axelrod Documentation, Release 0.0.1

• Hesitant Q Learner: Original name by Geraint Palmer

class axelrod.strategies.qlearner.RiskyQLearner
A player who learns the best strategies through the q-learning algorithm.

This Q learner is quick to come to conclusions and doesn’t care about the future.

Names:

• Risky Q Learner: Original name by Geraint Palmer

find_reward(opponent: axelrod.player.Player) → Dict[axelrod.action.Action,
Dict[axelrod.action.Action, Union[int, float]]]

Finds the reward gained on the last iteration

find_state(opponent: axelrod.player.Player)→ str
Finds the my_state (the opponents last n moves + its previous proportion of playing C) as a hashable state

perform_q_learning(prev_state: str, state: str, action: axelrod.action.Action, reward)
Performs the qlearning algorithm

select_action(state: str)→ axelrod.action.Action
Selects the action based on the epsilon-soft policy

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
Runs a qlearn algorithm while the tournament is running.

class axelrod.strategies.rand.Random(p: float = 0.5)
A player who randomly chooses between cooperating and defecting.

This strategy came 15th in Axelrod’s original tournament.

Names:

• Random: [Axelrod1980]

• Lunatic: [Tzafestas2000]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.resurrection.DoubleResurrection
A player starts by cooperating and defects if the number of rounds played by the player is greater than five and
the last five rounds are cooperations.

If the last five rounds were defections, the player cooperates.

Names:

• DoubleResurrection: [Eckhart2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.resurrection.Resurrection
A player starts by cooperating and defects if the number of rounds played by the player is greater than five and
the last five rounds are defections.

Otherwise, the strategy plays like Tit-for-tat.

Names:

• Resurrection: [Eckhart2015]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

122 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.retaliate.LimitedRetaliate(retaliation_threshold: float =
0.1, retaliation_limit: int = 20)

A player that co-operates unless the opponent defects and wins. It will then retaliate by defecting. It stops
when either, it has beaten the opponent 10 times more often that it has lost or it reaches the retaliation limit (20
defections).

Names:

• Limited Retaliate: Original name by Owen Campbell

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
If the opponent has played D to my C more often than x% of the time that I’ve done the same to him,
retaliate by playing D but stop doing so once I’ve hit the retaliation limit.

class axelrod.strategies.retaliate.LimitedRetaliate2(retaliation_threshold: float =
0.08, retaliation_limit: int =
15)

LimitedRetaliate player with a threshold of 8 percent and a retaliation limit of 15.

Names:

• Limited Retaliate 2: Original name by Owen Campbell

class axelrod.strategies.retaliate.LimitedRetaliate3(retaliation_threshold: float =
0.05, retaliation_limit: int =
20)

LimitedRetaliate player with a threshold of 5 percent and a retaliation limit of 20.

Names:

• Limited Retaliate 3: Original name by Owen Campbell

class axelrod.strategies.retaliate.Retaliate(retaliation_threshold: float = 0.1)
A player starts by cooperating but will retaliate once the opponent has won more than 10 percent times the
number of defections the player has.

Names:

• Retaliate: Original name by Owen Campbell

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
If the opponent has played D to my C more often than x% of the time that I’ve done the same to him, play
D. Otherwise, play C.

class axelrod.strategies.retaliate.Retaliate2(retaliation_threshold: float = 0.08)
Retaliate player with a threshold of 8 percent.

Names:

• Retaliate 2: Original name by Owen Campbell

class axelrod.strategies.retaliate.Retaliate3(retaliation_threshold: float = 0.05)
Retaliate player with a threshold of 5 percent.

Names:

• Retaliate 3: Original name by Owen Campbell

Revised Downing implemented from the Fortran source code for the second of Axelrod’s tournaments.

class axelrod.strategies.revised_downing.RevisedDowning
Strategy submitted to Axelrod’s second tournament by Leslie Downing. (K59R).

Revised Downing attempts to determine if players are cooperative or not. If so, it cooperates with them.

This strategy is a revision of the strategy submitted by Downing to Axelrod’s first tournament.

2.2. Reference 123

Axelrod Documentation, Release 0.0.1

Names: - Revised Downing: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.sequence_player.SequencePlayer(generator_function: func-
tion, generator_args: Tu-
ple = ())

Abstract base class for players that use a generated sequence to determine their plays.

Names:

• Sequence Player: Original name by Marc Harper

static meta_strategy(value: int)→ axelrod.action.Action
Determines how to map the sequence value to cooperate or defect. By default, treat values like python
truth values. Override in child classes for alternate behaviors.

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.sequence_player.ThueMorse
A player who cooperates or defects according to the Thue-Morse sequence. The first few terms of the Thue-
Morse sequence are: 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

Thue-Morse sequence: http://mathworld.wolfram.com/Thue-MorseSequence.html

Names:

• Thue Morse: Original name by Geraint Palmer

class axelrod.strategies.sequence_player.ThueMorseInverse
A player who plays the inverse of the Thue-Morse sequence.

Names:

• Inverse Thue Morse: Original name by Geraint Palmer

static meta_strategy(value: int)→ axelrod.action.Action
Determines how to map the sequence value to cooperate or defect. By default, treat values like python
truth values. Override in child classes for alternate behaviors.

class axelrod.strategies.shortmem.ShortMem
A player starts by always cooperating for the first 10 moves.

From the tenth round on, the player analyzes the last ten actions, and compare the number of defects and coop-
erates of the opponent, based in percentage. If cooperation occurs 30% more than defection, it will cooperate.
If defection occurs 30% more than cooperation, the program will defect. Otherwise, the program follows the
TitForTat algorithm.

Names:

• ShortMem: [Andre2013]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.selfsteem.SelfSteem
This strategy is based on the feeling with the same name. It is modeled on the sine curve(f = sin(2* pi * n / 10
)), which varies with the current iteration.

If f > 0.95, ‘ego’ of the algorithm is inflated; always defects. If 0.95 > abs(f) > 0.3, rational behavior; follows
TitForTat algortithm. If 0.3 > f > -0.3; random behavior. If f < -0.95, algorithm is at rock bottom; always
cooperates.

124 Chapter 2. Table of Contents

http://mathworld.wolfram.com/Thue-MorseSequence.html

Axelrod Documentation, Release 0.0.1

Futhermore, the algorithm implements a retaliation policy, if the opponent defects; the sin curve is shifted. But
due to lack of further information, this implementation does not include a sin phase change. Names:

• SelfSteem: [Andre2013]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.stalker.Stalker
This is a strategy which is only influenced by the score. Its behavior is based on three values: the very_bad_score
(all rounds in defection) very_good_score (all rounds in cooperation) wish_score (average between bad and
very_good score)

It starts with cooperation.

• If current_average_score > very_good_score, it defects

• If current_average_score lies in (wish_score, very_good_score) it cooperates

• If current_average_score > 2, it cooperates

• If current_average_score lies in (1, 2)

• The remaining case, current_average_score < 1, it behaves randomly.

• It defects in the last round

Names:

• Stalker: [Andre2013]

original_class
alias of Stalker

class axelrod.strategies.titfortat.AdaptiveTitForTat(rate: float = 0.5)
ATFT - Adaptive Tit For Tat (Basic Model)

Algorithm

if (opponent played C in the last cycle) then world = world + r*(1-world) else world = world + r*(0-world) If
(world >= 0.5) play C, else play D

Attributes

world [float [0.0, 1.0], set to 0.5] continuous variable representing the world’s image 1.0 - total cooperation
0.0 - total defection other values - something in between of the above updated every round, starting value
shouldn’t matter as long as it’s >= 0.5

Parameters

rate [float [0.0, 1.0], default=0.5] adaptation rate - r in Algorithm above smaller value means more gradual and
robust to perturbations behaviour

Names:

• Adaptive Tit For Tat: [Tzafestas2000]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.Alexei
Plays similar to Tit-for-Tat, but always defect on last turn.

Names:

• Alexei: [LessWrong2011]

2.2. Reference 125

Axelrod Documentation, Release 0.0.1

original_class
alias of Alexei

class axelrod.strategies.titfortat.AntiTitForTat
A strategy that plays the opposite of the opponents previous move. This is similar to Bully, except that the first
move is cooperation.

Names:

• Anti Tit For Tat: [Hilbe2013]

• Psycho (PSYC): [Ashlock2009]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.Bully
A player that behaves opposite to Tit For Tat, including first move.

Starts by defecting and then does the opposite of opponent’s previous move. This is the complete opposite of
Tit For Tat, also called Bully in the literature.

Names:

• Reverse Tit For Tat: [Nachbar1992]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.ContriteTitForTat
A player that corresponds to Tit For Tat if there is no noise. In the case of a noisy match: if the opponent defects
as a result of a noisy defection then ContriteTitForTat will become ‘contrite’ until it successfully cooperates.

Names:

• Contrite Tit For Tat: [Axelrod1995]

original_class
alias of ContriteTitForTat

class axelrod.strategies.titfortat.DynamicTwoTitsForTat
A player starts by cooperating and then punishes its opponent’s defections with defections, but with a dynamic
bias towards cooperating based on the opponent’s ratio of cooperations to total moves (so their current proba-
bility of cooperating regardless of the opponent’s move (aka: forgiveness)).

Names:

• Dynamic Two Tits For Tat: Original name by Grant Garrett-Grossman.

static strategy(opponent)
This is a placeholder strategy.

class axelrod.strategies.titfortat.EugineNier
Plays similar to Tit-for-Tat, but with two conditions: 1) Always Defect on Last Move 2) If other player defects
five times, switch to all defects.

Names:

• Eugine Nier: [LessWrong2011]

original_class
alias of EugineNier

class axelrod.strategies.titfortat.Gradual
Similar to OriginalGradual, this is a player that punishes defections with a growing number of defections but

126 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

after punishing for punishment_limit number of times enters a calming state and cooperates no matter what the
opponent does for two rounds.

This version of Gradual is an update of OriginalGradual and the difference is that the punishment_limit is
incremented whenever the opponent defects (regardless of the state of the player).

Note that this version of Gradual appears in [CRISTAL-SMAC2018] however this version of Gradual does not
give the results reported in [Beaufils1997] which is the paper that first introduced the strategy. For a longer
discussion of this see: https://github.com/Axelrod-Python/Axelrod/issues/1294.

This version is based on https://github.com/cristal-smac/ipd/blob/master/src/strategies.py#L224

Names:

• Gradual: [CRISTAL-SMAC2018]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.HardTitFor2Tats
A variant of Tit For Two Tats that uses a longer history for retaliation.

Names:

• Hard Tit For Two Tats: [Stewart2012]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.HardTitForTat
A variant of Tit For Tat that uses a longer history for retaliation.

Names:

• Hard Tit For Tat: [PD2017]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.Michaelos
Plays similar to Tit-for-Tat with two exceptions: 1) Defect on last turn. 2) After own defection and opponent’s
cooperation, 50 percent of the time, cooperate. The other 50 percent of the time, always defect for the rest of
the game.

Names:

• Michaelos: [LessWrong2011]

original_class
alias of Michaelos

class axelrod.strategies.titfortat.NTitsForMTats(N: int = 3, M: int = 2)
A parameterizable Tit-for-Tat, The arguments are: 1) M: the number of defection before retaliation 2) N: the
number of retaliations

Names:

• N Tit(s) For M Tat(s): Original name by Marc Harper

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.OmegaTFT(deadlock_threshold: int = 3, random-
ness_threshold: int = 8)

OmegaTFT modifies Tit For Tat in two ways: - checks for deadlock loops of alternating rounds of (C, D) and
(D, C), and attempting to break them - uses a more sophisticated retaliation mechanism that is noise tolerant

2.2. Reference 127

https://github.com/Axelrod-Python/Axelrod/issues/1294
https://github.com/cristal-smac/ipd/blob/master/src/strategies.py#L224

Axelrod Documentation, Release 0.0.1

Names:

• OmegaTFT: [Slany2007]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.OriginalGradual
A player that punishes defections with a growing number of defections but after punishing for punishment_limit
number of times enters a calming state and cooperates no matter what the opponent does for two rounds.

The punishment_limit is incremented whenever the opponent defects and the strategy is not in either calming or
punishing state.

Note that Gradual appears in [CRISTAL-SMAC2018] however that version of Gradual does not give the results
reported in [Beaufils1997] which is the paper that first introduced the strategy. For a longer discussion of this
see: https://github.com/Axelrod-Python/Axelrod/issues/1294. This is why this strategy has been renamed to
OriginalGradual.

Names:

• Gradual: [Beaufils1997]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.RandomTitForTat(p: float = 0.5)
A player starts by cooperating and then follows by copying its opponent (tit for tat style). From then on the
player will switch between copying its opponent and randomly responding every other iteration.

Name:

• Random TitForTat: Original name by Zachary M. Taylor

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is the actual strategy

class axelrod.strategies.titfortat.SlowTitForTwoTats2
A player plays C twice, then if the opponent plays the same move twice, plays that move, otherwise plays
previous move.

Names:

• Slow Tit For Tat: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.SneakyTitForTat
Tries defecting once and repents if punished.

Names:

• Sneaky Tit For Tat: Original name by Karol Langner

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.SpitefulTitForTat
A player starts by cooperating and then mimics the previous action of the opponent until opponent defects twice
in a row, at which point player always defects

Names:

• Spiteful Tit For Tat: [Prison1998]

128 Chapter 2. Table of Contents

https://github.com/Axelrod-Python/Axelrod/issues/1294

Axelrod Documentation, Release 0.0.1

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.SuspiciousTitForTat
A variant of Tit For Tat that starts off with a defection.

Names:

• Suspicious Tit For Tat: [Hilbe2013]

• Mistrust: [Beaufils1997]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.TitFor2Tats
A player starts by cooperating and then defects only after two defects by opponent.

Submitted to Axelrod’s second tournament by John Maynard Smith; it came in 24th in that tournament.

Names:

• Tit for two Tats: [Axelrod1984]

• Slow tit for two tats: Original name by Ranjini Das

• JMaynardSmith: [Axelrod1980b]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.titfortat.TitForTat
A player starts by cooperating and then mimics the previous action of the opponent.

This strategy was referred to as the ‘simplest’ strategy submitted to Axelrod’s first tournament. It came first.

Note that the code for this strategy is written in a fairly verbose way. This is done so that it can serve as an
example strategy for those who might be new to Python.

Names:

• Rapoport’s strategy: [Axelrod1980]

• TitForTat: [Axelrod1980]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is the actual strategy

class axelrod.strategies.titfortat.TwoTitsForTat
A player starts by cooperating and replies to each defect by two defections.

Names:

• Two Tits for Tats: [Axelrod1984]

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.verybad.VeryBad
It cooperates in the first three rounds, and uses probability (it implements a memory, which stores the opponent’s
moves) to decide for cooperating or defecting. Due to a lack of information as to what that probability refers to
in this context, probability(P(X)) refers to (Count(X)/Total_Moves) in this implementation P(C) = Cooperations
/ Total_Moves P(D) = Defections / Total_Moves = 1 - P(C)

Names:

• VeryBad: [Andre2013]

2.2. Reference 129

Axelrod Documentation, Release 0.0.1

static strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.worse_and_worse.KnowledgeableWorseAndWorse
This strategy is based on ‘Worse And Worse’ but will defect with probability of ‘current turn / total no. of turns’.

Names:

• Knowledgeable Worse and Worse: Original name by Adam Pohl

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.worse_and_worse.WorseAndWorse
Defects with probability of ‘current turn / 1000’. Therefore it is more and more likely to defect as the round
goes on.

Source code available at the download tab of [Prison1998]

Names:

• Worse and Worse: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.worse_and_worse.WorseAndWorse2
Plays as tit for tat during the first 20 moves. Then defects with probability (current turn - 20) / current turn.
Therefore it is more and more likely to defect as the round goes on.

Names:

• Worse and Worse 2: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.worse_and_worse.WorseAndWorse3
Cooperates in the first turn. Then defects with probability no. of opponent defects / (current turn - 1). Therefore
it is more likely to defect when the opponent defects for a larger proportion of the turns.

Names:

• Worse and Worse 3: [Prison1998]

strategy(opponent: axelrod.player.Player)→ axelrod.action.Action
This is a placeholder strategy.

class axelrod.strategies.zero_determinant.LRPlayer(phi: float = 0.2, s: float = 0.1, l:
float = 1)

Abstraction for Linear Relation players. These players enforce a linear difference in stationary payoffs 𝑠(𝑆𝑥𝑦 −
𝑙) = 𝑆𝑦𝑥 − 𝑙.

The parameter 𝑠 is called the slope and the parameter 𝑙 the baseline payoff. For extortionate strategies, the
extortion factor 𝜒 is the inverse of the slope 𝑠.

For the standard prisoner’s dilemma where 𝑇 > 𝑅 > 𝑃 > 𝑆 and 𝑅 > (𝑇 + 𝑆)/2 > 𝑃 , a pair (𝑙, 𝑠) is
enforceable iff

𝑃 <= 𝑙 <= 𝑅 (2.1)

𝑠𝑚𝑖𝑛 = −min

(︂
𝑇 − 𝑙

𝑙 − 𝑆
,
𝑙 − 𝑆

𝑇 − 𝑙

)︂
<= 𝑠 <= 1 (2.2)

130 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

And also that there exists 𝜑 such that

𝑝1 = 𝑃 (𝐶|𝐶𝐶) = 1− 𝜑(1− 𝑠)(𝑅− 𝑙) (2.3)
𝑝2 = 𝑃 (𝐶|𝐶𝐷) = 1− 𝜑(𝑠(𝑙 − 𝑆) + (𝑇 − 𝑙)) (2.4)
𝑝3 = 𝑃 (𝐶|𝐷𝐶) = 𝜑((𝑙 − 𝑆) + 𝑠(𝑇 − 𝑙)) (2.5)
𝑝4 = 𝑃 (𝐶|𝐷𝐷) = 𝜑(1− 𝑠)(𝑙 − 𝑃) (2.6)

These conditions also force 𝜑 >= 0. For a given pair (𝑙, 𝑠) there may be multiple such 𝜑.

This parameterization is Equation 14 in [Hilbe2013]. See Figure 2 of the article for a more in-depth explanation.
Other game parameters can alter the relations and bounds above.

Names:

• Linear Relation player: [Hilbe2013]

receive_match_attributes()
Parameters

phi, s, l: floats Parameter used to compute the four-vector according to the parameterization of the strate-
gies below.

class axelrod.strategies.zero_determinant.ZDExtort2(phi: float =
0.1111111111111111, s: float =
0.5)

An Extortionate Zero Determinant Strategy with l=P.

Names:

• Extort-2: [Stewart2012]

receive_match_attributes()
Parameters

phi, s, l: floats Parameter used to compute the four-vector according to the parameterization of the strate-
gies below.

class axelrod.strategies.zero_determinant.ZDExtort2v2(phi: float = 0.125, s: float =
0.5, l: float = 1)

An Extortionate Zero Determinant Strategy with l=1.

Names:

• EXTORT2: [Kuhn2017]

class axelrod.strategies.zero_determinant.ZDExtort3(phi: float =
0.11538461538461539, s:
float = 0.3333333333333333, l:
float = 1)

An extortionate strategy from Press and Dyson’s paper witn an extortion factor of 3.

Names:

• ZDExtort3: Original name by Marc Harper

• Unnamed: [Press2012]

class axelrod.strategies.zero_determinant.ZDExtort4(phi: float =
0.23529411764705882, s:
float = 0.25, l: float = 1)

An Extortionate Zero Determinant Strategy with l=1, s=1/4. TFT is the other extreme (with l=3, s=1)

Names:

• Extort 4: Original name by Marc Harper

2.2. Reference 131

Axelrod Documentation, Release 0.0.1

class axelrod.strategies.zero_determinant.ZDExtortion(phi: float = 0.2, s: float = 0.1,
l: float = 1)

An example ZD Extortion player.

Names:

• ZDExtortion: [Roemheld2013]

class axelrod.strategies.zero_determinant.ZDGTFT2(phi: float = 0.25, s: float = 0.5)
A Generous Zero Determinant Strategy with l=R.

Names:

• ZDGTFT-2: [Stewart2012]

receive_match_attributes()
Parameters

phi, s, l: floats Parameter used to compute the four-vector according to the parameterization of the strate-
gies below.

class axelrod.strategies.zero_determinant.ZDGen2(phi: float = 0.125, s: float = 0.5, l:
float = 3)

A Generous Zero Determinant Strategy with l=3.

Names:

• GEN2: [Kuhn2017]

class axelrod.strategies.zero_determinant.ZDMischief(phi: float = 0.1, s: float = 0.0,
l: float = 1)

An example ZD Mischief player.

Names:

• ZDMischief: [Roemheld2013]

class axelrod.strategies.zero_determinant.ZDSet2(phi: float = 0.25, s: float = 0.0, l:
float = 2)

A Generous Zero Determinant Strategy with l=2.

Names:

• SET2: [Kuhn2017]

2.2.5 Bibliography

This is a collection of various bibliographic items referenced in the documentation.

2.2.6 Glossary

There are a variety of terms used in the documentation and throughout the library. Here is an overview:

An action

An action is either C or D. You can access these actions as follows but should not really have a reason to:

132 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

>>> import axelrod as axl
>>> axl.Action.C
C
>>> axl.Action.D
D

A play

A play is a single player choosing an action. In terms of code this is equivalent to:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> (C, D) = p1.play(p2) # This constitues two 'plays' (p1 plays and p2 plays).

This is equivalent to p2.play(p1). Either function invokes both p1.strategy(p2) and p2.strategy(p1).

A turn

A turn is a 1 shot interaction between two players. It is in effect a composition of two plays.

Each turn has four possible outcomes of a play: (C, C), (C, D), (D, C), or (D, D).

A match

A match is a consecutive number of turns. The default number of turns used in the tournament is 200. Here is a
single match between two players over 3 turns:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> for turn in range(3):
... p1.play(p2)
(C, D)
(C, D)
(C, D)
>>> p1.history, p2.history
([C, C, C], [D, D, D])

A win

A win is attributed to the player who has the higher total score at the end of a match. For the example above,
Defector would win that match.

A strategy

A strategy is a set of instructions that dictate how to play given one’s own strategy and the strategy of an opponent.
In the library these correspond to the strategy classes: TitForTat, Grudger, Cooperator etc. . .

When appropriate to do so this will be used interchangeable with A player.

2.2. Reference 133

Axelrod Documentation, Release 0.0.1

A player

A player is a single agent using a given strategy. Players are the participants of tournament, usually they each represent
one strategy but of course you can have multiple players choosing the same strategy. In the library these correspond
to __instances__ of classes:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> p1
Cooperator
>>> p2
Defector

When appropriate to do so this will be used interchangeable with A strategy.

A round robin

A round robin is the set of all potential (order invariant) matches between a given collection of players.

A tournament

A tournament is a repetition of round robins so as to smooth out stochastic effects.

Noise

A match or tournament can be played with noise: this is the probability that indicates the chance of an action dictated
by a strategy being swapped.

2.3 Community

Contents:

2.3.1 Part of the team

If you’re reading this you’re probably interested in contributing to and/or using the Axelrod library! Firstly: thank
you and welcome!

We are proud of the library and the environment that surrounds it. A primary goal of the project is to cultivate an open
and welcoming community, considerate and respectful to newcomers to python and game theory.

The Axelrod library has been a first contribution to open source software for many, and this is in large part due to the
fact that we all aim to help and encourage all levels of contribution. If you’re a beginner, that’s awesome! You’re very
welcome and don’t hesitate to ask for help.

With regards to any contribution, please do not feel the need to wait until your contribution is perfectly polished
and complete: we’re happy to offer early feedback, help with git, and anything else that you need to have a positive
experience.

If you are using the library for your own work and there’s anything in the documentation that is unclear: we want
to know so that we can fix it. We also want to help so please don’t hesitate to get in touch.

134 Chapter 2. Table of Contents

Axelrod Documentation, Release 0.0.1

2.3.2 Communication

There are various ways of communicating with the team:

• Gitter: a web based chat client, you can talk directly to the users and maintainers of the library.

• Irc: we have an irc channel. It’s #axelrod-python on freenode.

• Email forum.

• Issues: you are also very welcome to open an issue on github

• Twitter. This account periodically tweets out random match and tournament results; you’re welcome to get in
touch through twitter as well.

2.3.3 Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

2.3. Community 135

https://gitter.im/Axelrod-Python/Axelrod
https://groups.google.com/forum/#!forum/axelrod-python
https://github.com/Axelrod-Python/Axelrod/issues
https://twitter.com/AxelrodPython

Axelrod Documentation, Release 0.0.1

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting a member of the
core team. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and
appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter
of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.
org/version/1/4

2.4 Citing the library

We would be delighted if anyone wanted to use and/or reference this library for their own research.

If you do please let us know and reference the library: as described in the CITATION.rst file on the library repository.

136 Chapter 2. Table of Contents

http://contributor-covenant.org
http://contributor-covenant.org/version/1/4
http://contributor-covenant.org/version/1/4
https://github.com/Axelrod-Python/Axelrod/blob/master/CITATION.rst

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

137

Axelrod Documentation, Release 0.0.1

138 Chapter 3. Indices and tables

Bibliography

[Adami2013] Adami C and Hintze A. (2013) Evolutionary instability of zero-determinant strategies demonstrates that
winning is not everything. Nature communications. https://www.nature.com/articles/ncomms3193

[Akin2015] Akin, Ethan. “What you gotta know to play good in the Iterated Prisoner’s Dilemma.” Games 6.3 (2015):
175-190.

[Amaral2016] Amaral, M. A., Wardil, L., Perc, M., & Da Silva, J. K. L. (2016). Stochastic win-stay-lose-shift strategy
with dynamic aspirations in evolutionary social dilemmas. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, 94(3), 1–9. https://doi.org/10.1103/PhysRevE.94.032317

[Andre2013] Andre L. C., Honovan P., Felipe T. and Frederico G. (2013). Iterated Prisoner’s Dilemma - An extended
analysis, http://abricom.org.br/wp-content/uploads/2016/03/bricsccicbic2013_submission_202.pdf

[Ashlock2006] Ashlock, D., & Kim E. Y, & Leahy, N. (2006). Understanding Representational Sensitivity in the
Iterated Prisoner’s Dilemma with Fingerprints. IEEE Transactions On Systems, Man, And Cybernetics,
Part C: Applications And Reviews, 36 (4)

[Ashlock2006b] Ashlock, W. & Ashlock, D. (2006). Changes in Prisoner’s Dilemma Strategies Over Evolutionary
Time With Different Population Sizes 2006 IEEE International Conference on Evolutionary Computa-
tion. http://DOI.org/10.1109/CEC.2006.1688322

[Ashlock2008] Ashlock, D., & Kim, E. Y. (2008). Fingerprinting: Visualization and automatic analysis of prisoner’s
dilemma strategies. IEEE Transactions on Evolutionary Computation, 12(5), 647–659. http://doi.org/10.
1109/TEVC.2008.920675

[Ashlock2009] Ashlock, D., Kim, E. Y., & Ashlock, W. (2009) Fingerprint analysis of the noisy prisoner’s dilemma
using a finite-state representation. IEEE Transactions on Computational Intelligence and AI in Games.
1(2), 154-167 http://doi.org/10.1109/TCIAIG.2009.2018704

[Ashlock2014] Ashlock, W., Tsang, J. & Ashlock, D. (2014) The evolution of exploitation. 2014 IEEE Symposium
on Foundations of Computational Intelligence (FOCI) http://DOI.org/10.1109/FOCI.2014.7007818

[Ashlock2015] Ashlock, D., Brown, J.A., & Hingston P. (2015). Multiple Opponent Optimization of Prisoner’s
Dilemma Playing Agents. Multiple Opponent Optimization of Prisoner’s Dilemma Playing Agents
http://DOI.org/10.1109/TCIAIG.2014.2326012

[Au2006] Au, T.-C. and Nau, D. S. (2006) Accident or intention: That is the question (in the iterated prisoner’s
dilemma). In Proc. Int. Conf. Auton. Agents and Multiagent Syst. (AAMAS), pp. 561–568. http://www.
cs.umd.edu/~nau/papers/au2006accident.pdf

139

https://www.nature.com/articles/ncomms3193
https://doi.org/10.1103/PhysRevE.94.032317
http://abricom.org.br/wp-content/uploads/2016/03/bricsccicbic2013_submission_202.pdf
http://DOI.org/10.1109/CEC.2006.1688322
http://doi.org/10.1109/TEVC.2008.920675
http://doi.org/10.1109/TEVC.2008.920675
http://doi.org/10.1109/TCIAIG.2009.2018704
http://DOI.org/10.1109/FOCI.2014.7007818
http://DOI.org/10.1109/TCIAIG.2014.2326012
http://www.cs.umd.edu/~nau/papers/au2006accident.pdf
http://www.cs.umd.edu/~nau/papers/au2006accident.pdf

Axelrod Documentation, Release 0.0.1

[Axelrod1980] Axelrod, R. (1980). Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution, 24(1),
3–25.

[Axelrod1980b] Axelrod, R. (1980). More Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution,
24(3), 379-403.

[Axelrod1984] The Evolution of Cooperation. Basic Books. ISBN 0-465-02121-2.

[Axelrod1995] Wu, J. and Axelrod, R. (1995). How to cope with noise in the Iterated prisoner’s dilemma, Journal of
Conflict Resolution, 39(1), pp. 183–189. doi: 10.1177/0022002795039001008.

[Banks1990] Banks, J. S., & Sundaram, R. K. (1990). Repeated games, finite automata, and complexity. Games and
Economic Behavior, 2(2), 97–117. http://doi.org/10.1016/0899-8256(90)90024-O

[Bendor1993] Bendor, Jonathan. “Uncertainty and the Evolution of Cooperation.” The Journal of Conflict Resolution,
37(4), 709–734.

[Beaufils1997] Beaufils, B. & Delahaye, J. & Mathieu, P. (1997). Our Meeting With Gradual: A Good Strategy For
The Iterated Prisoner’s Dilemma. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.4041

[Berg2015] Berg, P. Van Den, & Weissing, F. J. (2015). The importance of mechanisms for the evolution of cooper-
ation. Proceedings of the Royal Society B-Biological Sciences, 282.

[CRISTAL-SMAC2018] CRISTAL Lab, SMAC Team, Lille University (2018). IPD : the Iterated Prisoner’s Dilemma.
https://github.com/cristal-smac/ipd

[Downing1975] Downing, Leslie L. “The Prisoner’s Dilemma game as a problem-solving phenomenon: An outcome
maximization interpretation.” Simulation & Games 6.4 (1975): 366-391.

[Eckhart2015] Eckhart Arnold (2016) CoopSim v0.9.9 beta 6. https://github.com/jecki/CoopSim/

[Frean1994] Frean, Marcus R. “The Prisoner’s Dilemma without Synchrony.” Proceedings: Biological Sciences, vol.
257, no. 1348, 1994, pp. 75–79. www.jstor.org/stable/50253.

[Harper2017] Harper, M., Knight, V., Jones, M., Koutsovoulos, G., Glynatsi, N. E., & Campbell, O. (2017) Re-
inforcement learning produces dominant strategies for the Iterated Prisoner’s Dilemma. PloS one.
https://doi.org/10.1371/journal.pone.0188046

[Hauert2002] Hauert, Christoph, and Olaf Stenull. “Simple adaptive strategy wins the prisoner’s dilemma.” Journal
of Theoretical Biology 218.3 (2002): 261-272.

[Hilbe2013] Hilbe, C., Nowak, M.A. and Traulsen, A. (2013). Adaptive dynamics of extortion and compliance, PLoS
ONE, 8(11), p. e77886. doi: 10.1371/journal.pone.0077886.

[Hilbe2017] Hilbe, C., Martinez-Vaquero, L. A., Chatterjee K., Nowak M. A. (2017). Memory-n strategies of direct
reciprocity, Proceedings of the National Academy of Sciences May 2017, 114 (18) 4715-4720; doi:
10.1073/pnas.1621239114.

[Kuhn2017] Kuhn, Steven, “Prisoner’s Dilemma”, The Stanford Encyclopedia of Philosophy (Spring 2017 Edition),
Edward N. Zalta (ed.), https://plato.stanford.edu/archives/spr2017/entries/prisoner-dilemma/

[Kraines1989] Kraines, David, and Vivian Kraines. “Pavlov and the prisoner’s dilemma.” Theory and decision 26.1
(1989): 47-79. doi:10.1007/BF00134056

[LessWrong2011] Zoo of Strategies (2011) LessWrong. Available at: http://lesswrong.com/lw/7f2/prisoners_
dilemma_tournament_results/

[Li2007] Li, J, How to Design a Strategy to Win an IPD Tournament, in Kendall G., Yao X. and Chong S. (eds.)
The iterated prisoner’s dilemma: 20 years on. World Scientific, chapter 4, pp. 29-40, 2007.

[Li2009] Li, J. & Kendall, G. (2009). A Strategy with Novel Evolutionary Features for the Iterated Prisoner’s
Dilemma. Evolutionary Computation 17(2): 257–274.

140 Bibliography

http://doi.org/10.1016/0899-8256(90)90024-O
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.4041
https://github.com/cristal-smac/ipd
https://github.com/jecki/CoopSim/
https://doi.org/10.1371/journal.pone.0188046
https://plato.stanford.edu/archives/spr2017/entries/prisoner-dilemma/
http://lesswrong.com/lw/7f2/prisoners_dilemma_tournament_results/
http://lesswrong.com/lw/7f2/prisoners_dilemma_tournament_results/

Axelrod Documentation, Release 0.0.1

[Li2011] Li, J., Hingston, P., Member, S., & Kendall, G. (2011). Engineering Design of Strategies for Winning
Iterated Prisoner ’ s Dilemma Competitions, 3(4), 348–360.

[Li2014] Li, J. and Kendall, G. (2014). The Effect of Memory Size on the Evolutionary Stability of Strategies in
Iterated Prisoner’s Dilemma. IEEE Transactions on Evolutionary Computation, 18(6) 819-826

[LiS2014] Li, Siwei. (2014). Strategies in the Stochastic Iterated Prisoner’s Dilemma. Available at: http://math.
uchicago.edu/~may/REU2014/REUPapers/Li,Siwei.pdf

[Luis2008] Luis R. Izquierdo and Segismundo S. Izquierdo (2008). Dynamics of the Bush-Mosteller Learn-
ing Algorithm in 2x2 Games, Reinforcement Learning, Cornelius Weber, Mark Elshaw and Norbert
Michael Mayer (Ed.), InTech, DOI: 10.5772/5282. Available from: https://www.intechopen.com/books/
reinforcement_learning/dynamics_of_the_bush-mosteller_learning_algorithm_in_2x2_games

[Mathieu2015] Mathieu, P. and Delahaye, J. (2015). New Winning Strategies for the Iterated Prisoner’s Dilemma.
Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems.

[Mittal2009] Mittal, S., & Deb, K. (2009). Optimal strategies of the iterated prisoner’s dilemma problem for multiple
conflicting objectives. IEEE Transactions on Evolutionary Computation, 13(3), 554–565. https://doi.org/
10.1109/TEVC.2008.2009459

[Nachbar1992] Nachbar J., Evolution in the finitely repeated prisoner’s dilemma, Journal of Economic Behavior &
Organization, 19(3): 307-326, 1992.

[NC2019] https://github.com/ncase/trust (Accessed: 30 October 2019)

[Nowak1989] Nowak, Martin, and Karl Sigmund. “Game-dynamical aspects of the prisoner’s dilemma.” Applied
Mathematics and Computation 30.3 (1989): 191-213.

[Nowak1990] Nowak, M., & Sigmund, K. (1990). The evolution of stochastic strategies in the Prisoner’s Dilemma.
Acta Applicandae Mathematica. https://link.springer.com/article/10.1007/BF00049570

[Nowak1992] Nowak, M.., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature. http://doi.org/10.
1038/359826a0

[Nowak1993] Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the
Prisoner’s Dilemma game. Nature, 364(6432), 56–58. http://doi.org/10.1038/364056a0

[Ohtsuki2006] Ohtsuki, Hisashi, et al. “A simple rule for the evolution of cooperation on graphs and social networks.”
Nature 441.7092 (2006): 502.

[PD2017] http://www.prisoners-dilemma.com/competition.html (Accessed: 6 June 2017)

[Press2012] Press, W. H., & Dyson, F. J. (2012). Iterated Prisoner’s Dilemma contains strategies that dominate
any evolutionary opponent. Proceedings of the National Academy of Sciences, 109(26), 10409–10413.
http://doi.org/10.1073/pnas.1206569109

[Prison1998] LIFL (1998) PRISON. Available at: http://www.lifl.fr/IPD/ipd.frame.html (Accessed: 19 September
2016).

[Robson1990] Robson, Arthur J. “Efficiency in evolutionary games: Darwin, Nash and the secret handshake.” Journal
of theoretical Biology 144.3 (1990): 379-396.

[Roemheld2013] Roemheld, Lars. “Evolutionary Extortion and Mischief: Zero Determinant strategies in iterated 2x2
games”. Available at: https://arxiv.org/abs/1308.2576

[Singer-Clark2014] Singer-Clark, T. (2014). Morality Metrics On Iterated Prisoner’s Dilemma Players.

[Shakarian2013] Shakarian, P., Roos, P. & Moores, G. A Novel Analytical Method for Evolutionary Graph Theory
Problems.

[Slany2007] Slany W. and Kienreich W., On some winning strategies for the iterated prisoner’s dilemma, in Kendall
G., Yao X. and Chong S. (eds.) The iterated prisoner’s dilemma: 20 years on. World Scientific, chapter
8, pp. 171-204, 2007.

Bibliography 141

http://math.uchicago.edu/~may/REU2014/REUPapers/Li,Siwei.pdf
http://math.uchicago.edu/~may/REU2014/REUPapers/Li,Siwei.pdf
https://www.intechopen.com/books/reinforcement_learning/dynamics_of_the_bush-mosteller_learning_algorithm_in_2x2_games
https://www.intechopen.com/books/reinforcement_learning/dynamics_of_the_bush-mosteller_learning_algorithm_in_2x2_games
https://doi.org/10.1109/TEVC.2008.2009459
https://doi.org/10.1109/TEVC.2008.2009459
https://github.com/ncase/trust
https://link.springer.com/article/10.1007/BF00049570
http://doi.org/10.1038/359826a0
http://doi.org/10.1038/359826a0
http://doi.org/10.1038/364056a0
http://www.prisoners-dilemma.com/competition.html
http://doi.org/10.1073/pnas.1206569109
http://www.lifl.fr/IPD/ipd.frame.html
https://arxiv.org/abs/1308.2576

Axelrod Documentation, Release 0.0.1

[Stewart2012] Stewart, a. J., & Plotkin, J. B. (2012). Extortion and cooperation in the Prisoner’s Dilemma. Pro-
ceedings of the National Academy of Sciences, 109(26), 10134–10135. http://doi.org/10.1073/pnas.
1208087109

[Szabo2007] Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Physics Reports, 446(4-6), 97–216. http:
//doi.org/10.1016/j.physrep.2007.04.004

[Gaudesi2016] Gaudesi, Marco, et al. “Exploiting evolutionary modeling to prevail in iterated prisoner’s dilemma
tournaments.” IEEE Transactions on Computational Intelligence and AI in Games 8.3 (2016): 288-300.

[Tzafestas2000] Tzafestas, E. (2000). Toward adaptive cooperative behavior. From Animals to Animals: Proceedings
of the 6th International Conference on the Simulation of Adaptive Behavior {(SAB-2000)}, 2, 334–340.

142 Bibliography

http://doi.org/10.1073/pnas.1208087109
http://doi.org/10.1073/pnas.1208087109
http://doi.org/10.1016/j.physrep.2007.04.004
http://doi.org/10.1016/j.physrep.2007.04.004

Python Module Index

a
axelrod.strategies.adaptive, 69
axelrod.strategies.adaptor, 70
axelrod.strategies.alternator, 70
axelrod.strategies.ann, 70
axelrod.strategies.apavlov, 71
axelrod.strategies.appeaser, 72
axelrod.strategies.averagecopier, 72
axelrod.strategies.axelrod_first, 72
axelrod.strategies.axelrod_second, 79
axelrod.strategies.backstabber, 90
axelrod.strategies.better_and_better,

91
axelrod.strategies.bush_mosteller, 91
axelrod.strategies.calculator, 91
axelrod.strategies.cooperator, 91
axelrod.strategies.cycler, 92
axelrod.strategies.darwin, 93
axelrod.strategies.dbs, 93
axelrod.strategies.defector, 95
axelrod.strategies.doubler, 95
axelrod.strategies.finite_state_machines,

96
axelrod.strategies.forgiver, 98
axelrod.strategies.gambler, 99
axelrod.strategies.geller, 100
axelrod.strategies.gobymajority, 101
axelrod.strategies.gradualkiller, 102
axelrod.strategies.grudger, 102
axelrod.strategies.grumpy, 104
axelrod.strategies.handshake, 104
axelrod.strategies.hmm, 104
axelrod.strategies.hunter, 105
axelrod.strategies.inverse, 107
axelrod.strategies.lookerup, 107
axelrod.strategies.mathematicalconstants,

110
axelrod.strategies.memoryone, 112
axelrod.strategies.memorytwo, 110

axelrod.strategies.meta, 113
axelrod.strategies.mindcontrol, 117
axelrod.strategies.mindreader, 117
axelrod.strategies.mutual, 118
axelrod.strategies.negation, 118
axelrod.strategies.oncebitten, 118
axelrod.strategies.prober, 119
axelrod.strategies.punisher, 120
axelrod.strategies.qlearner, 121
axelrod.strategies.rand, 122
axelrod.strategies.resurrection, 122
axelrod.strategies.retaliate, 122
axelrod.strategies.revised_downing, 123
axelrod.strategies.selfsteem, 124
axelrod.strategies.sequence_player, 124
axelrod.strategies.shortmem, 124
axelrod.strategies.stalker, 125
axelrod.strategies.titfortat, 125
axelrod.strategies.verybad, 129
axelrod.strategies.worse_and_worse, 130
axelrod.strategies.zero_determinant, 130

143

Axelrod Documentation, Release 0.0.1

144 Python Module Index

Index

A
AbstractAdaptor (class in axel-

rod.strategies.adaptor), 70
activate() (in module axelrod.strategies.ann), 71
Adaptive (class in axelrod.strategies.adaptive), 69
AdaptiveTitForTat (class in axel-

rod.strategies.titfortat), 125
AdaptorBrief (class in axelrod.strategies.adaptor),

70
AdaptorLong (class in axelrod.strategies.adaptor), 70
Aggravater (class in axelrod.strategies.grudger), 102
Alexei (class in axelrod.strategies.titfortat), 125
ALLCorALLD (class in axelrod.strategies.memoryone),

112
Alternator (class in axelrod.strategies.alternator), 70
AlternatorHunter (class in axel-

rod.strategies.hunter), 105
ANN (class in axelrod.strategies.ann), 70
AntiCycler (class in axelrod.strategies.cycler), 92
AntiTitForTat (class in axelrod.strategies.titfortat),

126
AON2 (class in axelrod.strategies.memorytwo), 110
APavlov2006 (class in axelrod.strategies.apavlov), 71
APavlov2011 (class in axelrod.strategies.apavlov), 72
Appeaser (class in axelrod.strategies.appeaser), 72
ArrogantQLearner (class in axel-

rod.strategies.qlearner), 121
AverageCopier (class in axel-

rod.strategies.averagecopier), 72
axelrod.strategies.adaptive (module), 69
axelrod.strategies.adaptor (module), 70
axelrod.strategies.alternator (module), 70
axelrod.strategies.ann (module), 70
axelrod.strategies.apavlov (module), 71
axelrod.strategies.appeaser (module), 72
axelrod.strategies.averagecopier (mod-

ule), 72
axelrod.strategies.axelrod_first (mod-

ule), 72

axelrod.strategies.axelrod_second (mod-
ule), 79

axelrod.strategies.backstabber (module),
90

axelrod.strategies.better_and_better
(module), 91

axelrod.strategies.bush_mosteller (mod-
ule), 91

axelrod.strategies.calculator (module), 91
axelrod.strategies.cooperator (module), 91
axelrod.strategies.cycler (module), 92
axelrod.strategies.darwin (module), 93
axelrod.strategies.dbs (module), 93
axelrod.strategies.defector (module), 95
axelrod.strategies.doubler (module), 95
axelrod.strategies.finite_state_machines

(module), 96
axelrod.strategies.forgiver (module), 98
axelrod.strategies.gambler (module), 99
axelrod.strategies.geller (module), 100
axelrod.strategies.gobymajority (module),

101
axelrod.strategies.gradualkiller (mod-

ule), 102
axelrod.strategies.grudger (module), 102
axelrod.strategies.grumpy (module), 104
axelrod.strategies.handshake (module), 104
axelrod.strategies.hmm (module), 104
axelrod.strategies.hunter (module), 105
axelrod.strategies.inverse (module), 107
axelrod.strategies.lookerup (module), 107
axelrod.strategies.mathematicalconstants

(module), 110
axelrod.strategies.memoryone (module), 112
axelrod.strategies.memorytwo (module), 110
axelrod.strategies.meta (module), 113
axelrod.strategies.mindcontrol (module),

117
axelrod.strategies.mindreader (module),

117

145

Axelrod Documentation, Release 0.0.1

axelrod.strategies.mutual (module), 118
axelrod.strategies.negation (module), 118
axelrod.strategies.oncebitten (module),

118
axelrod.strategies.prober (module), 119
axelrod.strategies.punisher (module), 120
axelrod.strategies.qlearner (module), 121
axelrod.strategies.rand (module), 122
axelrod.strategies.resurrection (module),

122
axelrod.strategies.retaliate (module), 122
axelrod.strategies.revised_downing (mod-

ule), 123
axelrod.strategies.selfsteem (module), 124
axelrod.strategies.sequence_player (mod-

ule), 124
axelrod.strategies.shortmem (module), 124
axelrod.strategies.stalker (module), 125
axelrod.strategies.titfortat (module), 125
axelrod.strategies.verybad (module), 129
axelrod.strategies.worse_and_worse (mod-

ule), 130
axelrod.strategies.zero_determinant

(module), 130

B
BackStabber (class in axel-

rod.strategies.backstabber), 90
BetterAndBetter (class in axel-

rod.strategies.better_and_better), 91
Bully (class in axelrod.strategies.titfortat), 126
BushMosteller (class in axel-

rod.strategies.bush_mosteller), 91

C
calculate_chi_squared() (axel-

rod.strategies.axelrod_second.SecondByHarrington
method), 84

Calculator (class in axelrod.strategies.calculator), 91
CautiousQLearner (class in axel-

rod.strategies.qlearner), 121
CollectiveStrategy (class in axel-

rod.strategies.prober), 119
compute_features() (in module axel-

rod.strategies.ann), 71
compute_prob_rule() (axelrod.strategies.dbs.DBS

method), 94
ContriteTitForTat (class in axel-

rod.strategies.titfortat), 126
Cooperator (class in axelrod.strategies.cooperator),

91
CooperatorHunter (class in axel-

rod.strategies.hunter), 106

CotoDeRatio (class in axel-
rod.strategies.mathematicalconstants), 110

create_lookup_table_keys() (in module axel-
rod.strategies.lookerup), 110

create_policy() (in module axelrod.strategies.dbs),
95

create_vector_bounds() (axel-
rod.strategies.finite_state_machines.EvolvableFSMPlayer
method), 96

create_vector_bounds() (axel-
rod.strategies.gambler.EvolvableGambler
method), 99

create_vector_bounds() (axel-
rod.strategies.hmm.EvolvableHMMPlayer
method), 104

crossover() (axelrod.strategies.ann.EvolvableANN
method), 71

crossover() (axelrod.strategies.cycler.EvolvableCycler
method), 93

crossover() (axelrod.strategies.finite_state_machines.EvolvableFSMPlayer
method), 96

crossover() (axelrod.strategies.hmm.EvolvableHMMPlayer
method), 104

crossover() (axelrod.strategies.lookerup.EvolvableLookerUp
method), 107

CycleHunter (class in axelrod.strategies.hunter), 106
Cycler (class in axelrod.strategies.cycler), 92
CyclerCCCCCD (class in axelrod.strategies.cycler), 92
CyclerCCCD (class in axelrod.strategies.cycler), 92
CyclerCCCDCD (class in axelrod.strategies.cycler), 92
CyclerCCD (class in axelrod.strategies.cycler), 92
CyclerDC (class in axelrod.strategies.cycler), 93
CyclerDDC (class in axelrod.strategies.cycler), 93

D
Darwin (class in axelrod.strategies.darwin), 93
DBS (class in axelrod.strategies.dbs), 93
Defector (class in axelrod.strategies.defector), 95
DefectorHunter (class in axelrod.strategies.hunter),

106
DelayedAON1 (class in axelrod.strategies.memorytwo),

111
Desperate (class in axelrod.strategies.mutual), 118
detect_parity_streak() (axel-

rod.strategies.axelrod_second.SecondByHarrington
method), 84

detect_random() (axel-
rod.strategies.axelrod_second.SecondByHarrington
method), 84

detect_streak() (axel-
rod.strategies.axelrod_second.SecondByHarrington
method), 85

Detective (class in axelrod.strategies.prober), 119

146 Index

Axelrod Documentation, Release 0.0.1

DeterministicNode (class in axel-
rod.strategies.dbs), 94

display() (axelrod.strategies.lookerup.LookupTable
method), 109

DoubleCrosser (class in axel-
rod.strategies.backstabber), 90

Doubler (class in axelrod.strategies.doubler), 95
DoubleResurrection (class in axel-

rod.strategies.resurrection), 122
DynamicTwoTitsForTat (class in axel-

rod.strategies.titfortat), 126

E
e (class in axelrod.strategies.mathematicalconstants),

110
EasyGo (class in axelrod.strategies.grudger), 102
EugineNier (class in axelrod.strategies.titfortat), 126
EventualCycleHunter (class in axel-

rod.strategies.hunter), 106
EvolvableANN (class in axelrod.strategies.ann), 71
EvolvableCycler (class in axel-

rod.strategies.cycler), 93
EvolvableFSMPlayer (class in axel-

rod.strategies.finite_state_machines), 96
EvolvableGambler (class in axel-

rod.strategies.gambler), 99
EvolvableHMMPlayer (class in axel-

rod.strategies.hmm), 104
EvolvableLookerUp (class in axel-

rod.strategies.lookerup), 107
EvolvedANN (class in axelrod.strategies.ann), 71
EvolvedANN5 (class in axelrod.strategies.ann), 71
EvolvedANNNoise05 (class in axel-

rod.strategies.ann), 71
EvolvedFSM16 (class in axel-

rod.strategies.finite_state_machines), 96
EvolvedFSM16Noise05 (class in axel-

rod.strategies.finite_state_machines), 96
EvolvedFSM4 (class in axel-

rod.strategies.finite_state_machines), 96
EvolvedHMM5 (class in axelrod.strategies.hmm), 105
EvolvedLookerUp1_1_1 (class in axel-

rod.strategies.lookerup), 107
EvolvedLookerUp2_2_2 (class in axel-

rod.strategies.lookerup), 107

F
find_reward() (axel-

rod.strategies.qlearner.RiskyQLearner
method), 122

find_state() (axel-
rod.strategies.qlearner.RiskyQLearner
method), 122

FirmButFair (class in axelrod.strategies.memoryone),
112

FirstByAnonymous (class in axel-
rod.strategies.axelrod_first), 72

FirstByDavis (class in axel-
rod.strategies.axelrod_first), 73

FirstByDowning (class in axel-
rod.strategies.axelrod_first), 73

FirstByFeld (class in axel-
rod.strategies.axelrod_first), 75

FirstByGraaskamp (class in axel-
rod.strategies.axelrod_first), 75

FirstByGrofman (class in axel-
rod.strategies.axelrod_first), 76

FirstByJoss (class in axel-
rod.strategies.axelrod_first), 76

FirstByNydegger (class in axel-
rod.strategies.axelrod_first), 76

FirstByShubik (class in axel-
rod.strategies.axelrod_first), 77

FirstBySteinAndRapoport (class in axel-
rod.strategies.axelrod_first), 78

FirstByTidemanAndChieruzzi (class in axel-
rod.strategies.axelrod_first), 78

FirstByTullock (class in axel-
rod.strategies.axelrod_first), 79

foil_strategy_inspection() (axel-
rod.strategies.darwin.Darwin static method),
93

foil_strategy_inspection() (axel-
rod.strategies.geller.Geller static method),
100

foil_strategy_inspection() (axel-
rod.strategies.geller.GellerCooperator static
method), 100

foil_strategy_inspection() (axel-
rod.strategies.geller.GellerDefector static
method), 101

foil_strategy_inspection() (axel-
rod.strategies.mindreader.MindReader static
method), 117

foil_strategy_inspection() (axel-
rod.strategies.mindreader.MirrorMindReader
static method), 117

FoolMeOnce (class in axelrod.strategies.oncebitten),
118

ForgetfulFoolMeOnce (class in axel-
rod.strategies.oncebitten), 118

ForgetfulGrudger (class in axel-
rod.strategies.grudger), 103

Forgiver (class in axelrod.strategies.forgiver), 98
ForgivingTitForTat (class in axel-

rod.strategies.forgiver), 99
Fortress3 (class in axel-

Index 147

Axelrod Documentation, Release 0.0.1

rod.strategies.finite_state_machines), 97
Fortress4 (class in axel-

rod.strategies.finite_state_machines), 97
FSMPlayer (class in axel-

rod.strategies.finite_state_machines), 97

G
gain_loss_translate() (axel-

rod.strategies.meta.MemoryDecay method),
113

Gambler (class in axelrod.strategies.gambler), 99
Geller (class in axelrod.strategies.geller), 100
GellerCooperator (class in axel-

rod.strategies.geller), 100
GellerDefector (class in axelrod.strategies.geller),

100
GeneralSoftGrudger (class in axel-

rod.strategies.grudger), 103
get_last_n_plays() (in module axel-

rod.strategies.lookerup), 110
get_siblings() (axel-

rod.strategies.dbs.DeterministicNode method),
94

get_siblings() (axel-
rod.strategies.dbs.StochasticNode method),
95

GoByMajority (class in axel-
rod.strategies.gobymajority), 101

GoByMajority10 (class in axel-
rod.strategies.gobymajority), 101

GoByMajority20 (class in axel-
rod.strategies.gobymajority), 101

GoByMajority40 (class in axel-
rod.strategies.gobymajority), 101

GoByMajority5 (class in axel-
rod.strategies.gobymajority), 101

Golden (class in axel-
rod.strategies.mathematicalconstants), 110

Gradual (class in axelrod.strategies.titfortat), 126
GradualKiller (class in axel-

rod.strategies.gradualkiller), 102
Grudger (class in axelrod.strategies.grudger), 103
GrudgerAlternator (class in axel-

rod.strategies.grudger), 103
Grumpy (class in axelrod.strategies.grumpy), 104
GTFT (class in axelrod.strategies.memoryone), 112

H
Handshake (class in axelrod.strategies.handshake), 104
HardGoByMajority (class in axel-

rod.strategies.gobymajority), 101
HardGoByMajority10 (class in axel-

rod.strategies.gobymajority), 102

HardGoByMajority20 (class in axel-
rod.strategies.gobymajority), 102

HardGoByMajority40 (class in axel-
rod.strategies.gobymajority), 102

HardGoByMajority5 (class in axel-
rod.strategies.gobymajority), 102

HardProber (class in axelrod.strategies.prober), 119
HardTitFor2Tats (class in axel-

rod.strategies.titfortat), 127
HardTitForTat (class in axelrod.strategies.titfortat),

127
HesitantQLearner (class in axel-

rod.strategies.qlearner), 121
HMMPlayer (class in axelrod.strategies.hmm), 105
Hopeless (class in axelrod.strategies.mutual), 118

I
Inverse (class in axelrod.strategies.inverse), 107
InversePunisher (class in axel-

rod.strategies.punisher), 120
is_stochastic() (axel-

rod.strategies.dbs.DeterministicNode method),
94

is_stochastic() (axel-
rod.strategies.dbs.StochasticNode method),
95

is_stochastic() (axel-
rod.strategies.hmm.HMMPlayer method),
105

is_stochastic_matrix() (in module axel-
rod.strategies.hmm), 105

is_well_formed() (axel-
rod.strategies.hmm.SimpleHMM method),
105

K
KnowledgeableWorseAndWorse (class in axel-

rod.strategies.worse_and_worse), 130

L
LevelPunisher (class in axelrod.strategies.punisher),

121
LimitedRetaliate (class in axel-

rod.strategies.retaliate), 122
LimitedRetaliate2 (class in axel-

rod.strategies.retaliate), 123
LimitedRetaliate3 (class in axel-

rod.strategies.retaliate), 123
LookerUp (class in axelrod.strategies.lookerup), 107
lookup_table_display() (axel-

rod.strategies.lookerup.LookerUp method),
108

LookupTable (class in axelrod.strategies.lookerup),
108

148 Index

Axelrod Documentation, Release 0.0.1

LRPlayer (class in axel-
rod.strategies.zero_determinant), 130

M
make_keys_into_plays() (in module axel-

rod.strategies.lookerup), 110
MathConstantHunter (class in axel-

rod.strategies.hunter), 106
MEM2 (class in axelrod.strategies.memorytwo), 111
memory_alter() (axel-

rod.strategies.meta.MemoryDecay method),
113

memory_delete() (axel-
rod.strategies.meta.MemoryDecay method),
113

MemoryDecay (class in axelrod.strategies.meta), 113
MemoryOnePlayer (class in axel-

rod.strategies.memoryone), 112
MemoryTwoPlayer (class in axel-

rod.strategies.memorytwo), 111
meta_strategy() (axel-

rod.strategies.meta.MemoryDecay method),
114

meta_strategy() (axel-
rod.strategies.meta.MetaHunter static method),
114

meta_strategy() (axel-
rod.strategies.meta.MetaHunterAggressive
static method), 114

meta_strategy() (axel-
rod.strategies.meta.MetaMajority static
method), 114

meta_strategy() (axel-
rod.strategies.meta.MetaMinority static
method), 114

meta_strategy() (axel-
rod.strategies.meta.MetaMixer method),
115

meta_strategy() (axel-
rod.strategies.meta.MetaPlayer method),
115

meta_strategy() (axel-
rod.strategies.meta.MetaWinner method),
115

meta_strategy() (axel-
rod.strategies.meta.MetaWinnerEnsemble
method), 115

meta_strategy() (axel-
rod.strategies.sequence_player.SequencePlayer
static method), 124

meta_strategy() (axel-
rod.strategies.sequence_player.ThueMorseInverse
static method), 124

MetaHunter (class in axelrod.strategies.meta), 114

MetaHunterAggressive (class in axel-
rod.strategies.meta), 114

MetaMajority (class in axelrod.strategies.meta), 114
MetaMajorityFiniteMemory (class in axel-

rod.strategies.meta), 114
MetaMajorityLongMemory (class in axel-

rod.strategies.meta), 114
MetaMajorityMemoryOne (class in axel-

rod.strategies.meta), 114
MetaMinority (class in axelrod.strategies.meta), 114
MetaMixer (class in axelrod.strategies.meta), 114
MetaPlayer (class in axelrod.strategies.meta), 115
MetaWinner (class in axelrod.strategies.meta), 115
MetaWinnerDeterministic (class in axel-

rod.strategies.meta), 115
MetaWinnerEnsemble (class in axel-

rod.strategies.meta), 115
MetaWinnerFiniteMemory (class in axel-

rod.strategies.meta), 115
MetaWinnerLongMemory (class in axel-

rod.strategies.meta), 116
MetaWinnerMemoryOne (class in axel-

rod.strategies.meta), 116
MetaWinnerStochastic (class in axel-

rod.strategies.meta), 116
Michaelos (class in axelrod.strategies.titfortat), 127
MindBender (class in axelrod.strategies.mindcontrol),

117
MindController (class in axel-

rod.strategies.mindcontrol), 117
MindReader (class in axelrod.strategies.mindreader),

117
MindWarper (class in axelrod.strategies.mindcontrol),

117
minimax_tree_search() (in module axel-

rod.strategies.dbs), 95
MirrorMindReader (class in axel-

rod.strategies.mindreader), 117
move() (axelrod.strategies.finite_state_machines.SimpleFSM

method), 98
move() (axelrod.strategies.hmm.SimpleHMM method),

105
move_gen() (in module axelrod.strategies.dbs), 95
mutate() (axelrod.strategies.ann.EvolvableANN

method), 71
mutate() (axelrod.strategies.cycler.EvolvableCycler

method), 93
mutate() (axelrod.strategies.darwin.Darwin method),

93
mutate() (axelrod.strategies.finite_state_machines.EvolvableFSMPlayer

method), 96
mutate() (axelrod.strategies.hmm.EvolvableHMMPlayer

method), 104
mutate() (axelrod.strategies.lookerup.EvolvableLookerUp

Index 149

Axelrod Documentation, Release 0.0.1

method), 107
mutate_row() (in module axelrod.strategies.hmm),

105

N
NaiveProber (class in axelrod.strategies.prober), 119
Negation (class in axelrod.strategies.negation), 118
NiceAverageCopier (class in axel-

rod.strategies.averagecopier), 72
NiceMetaWinner (class in axelrod.strategies.meta),

116
NiceMetaWinnerEnsemble (class in axel-

rod.strategies.meta), 116
NMWEDeterministic (class in axel-

rod.strategies.meta), 116
NMWEFiniteMemory (class in axel-

rod.strategies.meta), 116
NMWELongMemory (class in axelrod.strategies.meta),

116
NMWEMemoryOne (class in axelrod.strategies.meta),

116
NMWEStochastic (class in axelrod.strategies.meta),

116
Node (class in axelrod.strategies.dbs), 94
normalize_transitions() (axel-

rod.strategies.finite_state_machines.EvolvableFSMPlayer
class method), 96

NTitsForMTats (class in axelrod.strategies.titfortat),
127

num_states() (axel-
rod.strategies.finite_state_machines.SimpleFSM
method), 98

O
OmegaTFT (class in axelrod.strategies.titfortat), 127
OnceBitten (class in axelrod.strategies.oncebitten),

119
op_openings (axelrod.strategies.lookerup.Plays at-

tribute), 109
op_plays (axelrod.strategies.lookerup.Plays attribute),

109
OppositeGrudger (class in axel-

rod.strategies.grudger), 103
original_class (axel-

rod.strategies.axelrod_first.FirstBySteinAndRapoport
attribute), 78

original_class (axel-
rod.strategies.axelrod_first.FirstByTidemanAndChieruzzi
attribute), 79

original_class (axel-
rod.strategies.backstabber.BackStabber at-
tribute), 90

original_class (axel-
rod.strategies.backstabber.DoubleCrosser

attribute), 91
original_class (axel-

rod.strategies.gradualkiller.GradualKiller
attribute), 102

original_class (axel-
rod.strategies.meta.NiceMetaWinner attribute),
116

original_class (axel-
rod.strategies.meta.NiceMetaWinnerEnsemble
attribute), 117

original_class (axelrod.strategies.stalker.Stalker
attribute), 125

original_class (axelrod.strategies.titfortat.Alexei
attribute), 125

original_class (axel-
rod.strategies.titfortat.ContriteTitForTat
attribute), 126

original_class (axel-
rod.strategies.titfortat.EugineNier attribute),
126

original_class (axel-
rod.strategies.titfortat.Michaelos attribute),
127

OriginalGradual (class in axel-
rod.strategies.titfortat), 128

P
perform_q_learning() (axel-

rod.strategies.qlearner.RiskyQLearner
method), 122

Pi (class in axelrod.strategies.mathematicalconstants),
110

Plays (class in axelrod.strategies.lookerup), 109
Predator (class in axel-

rod.strategies.finite_state_machines), 97
Prober (class in axelrod.strategies.prober), 119
Prober2 (class in axelrod.strategies.prober), 120
Prober3 (class in axelrod.strategies.prober), 120
Prober4 (class in axelrod.strategies.prober), 120
ProtectedMindReader (class in axel-

rod.strategies.mindreader), 118
PSOGambler1_1_1 (class in axel-

rod.strategies.gambler), 99
PSOGambler2_2_2 (class in axel-

rod.strategies.gambler), 99
PSOGambler2_2_2_Noise05 (class in axel-

rod.strategies.gambler), 99
PSOGamblerMem1 (class in axel-

rod.strategies.gambler), 100
Pun1 (class in axelrod.strategies.finite_state_machines),

97
Punisher (class in axelrod.strategies.punisher), 121

150 Index

Axelrod Documentation, Release 0.0.1

R
Raider (class in axel-

rod.strategies.finite_state_machines), 97
Random (class in axelrod.strategies.rand), 122
RandomHunter (class in axelrod.strategies.hunter),

106
RandomTitForTat (class in axel-

rod.strategies.titfortat), 128
ReactivePlayer (class in axel-

rod.strategies.memoryone), 112
receive_match_attributes() (axel-

rod.strategies.zero_determinant.LRPlayer
method), 131

receive_match_attributes() (axel-
rod.strategies.zero_determinant.ZDExtort2
method), 131

receive_match_attributes() (axel-
rod.strategies.zero_determinant.ZDGTFT2
method), 132

receive_vector() (axel-
rod.strategies.finite_state_machines.EvolvableFSMPlayer
method), 96

receive_vector() (axel-
rod.strategies.gambler.EvolvableGambler
method), 99

receive_vector() (axel-
rod.strategies.hmm.EvolvableHMMPlayer
method), 104

RemorsefulProber (class in axel-
rod.strategies.prober), 120

reset() (axelrod.strategies.darwin.Darwin method),
93

reset_genome() (axelrod.strategies.darwin.Darwin
static method), 93

Resurrection (class in axel-
rod.strategies.resurrection), 122

Retaliate (class in axelrod.strategies.retaliate), 123
Retaliate2 (class in axelrod.strategies.retaliate), 123
Retaliate3 (class in axelrod.strategies.retaliate), 123
RevisedDowning (class in axel-

rod.strategies.revised_downing), 123
Ripoff (class in axel-

rod.strategies.finite_state_machines), 97
RiskyQLearner (class in axelrod.strategies.qlearner),

122

S
score_history() (axel-

rod.strategies.axelrod_first.FirstByNydegger
static method), 77

SecondByAppold (class in axel-
rod.strategies.axelrod_second), 79

SecondByBlack (class in axel-
rod.strategies.axelrod_second), 80

SecondByBorufsen (class in axel-
rod.strategies.axelrod_second), 80

SecondByCave (class in axel-
rod.strategies.axelrod_second), 80

SecondByChampion (class in axel-
rod.strategies.axelrod_second), 81

SecondByColbert (class in axel-
rod.strategies.axelrod_second), 81

SecondByEatherley (class in axel-
rod.strategies.axelrod_second), 81

SecondByGetzler (class in axel-
rod.strategies.axelrod_second), 81

SecondByGladstein (class in axel-
rod.strategies.axelrod_second), 82

SecondByGraaskampKatzen (class in axel-
rod.strategies.axelrod_second), 82

SecondByGrofman (class in axel-
rod.strategies.axelrod_second), 82

SecondByHarrington (class in axel-
rod.strategies.axelrod_second), 83

SecondByKluepfel (class in axel-
rod.strategies.axelrod_second), 85

SecondByLeyvraz (class in axel-
rod.strategies.axelrod_second), 85

SecondByMikkelson (class in axel-
rod.strategies.axelrod_second), 86

SecondByRichardHufford (class in axel-
rod.strategies.axelrod_second), 86

SecondByRowsam (class in axel-
rod.strategies.axelrod_second), 86

SecondByTester (class in axel-
rod.strategies.axelrod_second), 87

SecondByTidemanAndChieruzzi (class in axel-
rod.strategies.axelrod_second), 87

SecondByTranquilizer (class in axel-
rod.strategies.axelrod_second), 88

SecondByWeiner (class in axel-
rod.strategies.axelrod_second), 89

SecondByWhite (class in axel-
rod.strategies.axelrod_second), 89

SecondByWmAdams (class in axel-
rod.strategies.axelrod_second), 90

SecondByYamachi (class in axel-
rod.strategies.axelrod_second), 90

select_action() (axel-
rod.strategies.qlearner.RiskyQLearner
method), 122

self_plays (axelrod.strategies.lookerup.Plays at-
tribute), 109

SelfSteem (class in axelrod.strategies.selfsteem), 124
SequencePlayer (class in axel-

rod.strategies.sequence_player), 124
set_cycle() (axelrod.strategies.cycler.Cycler

method), 92

Index 151

Axelrod Documentation, Release 0.0.1

ShortMem (class in axelrod.strategies.shortmem), 124
should_demote() (axelrod.strategies.dbs.DBS

method), 94
should_promote() (axelrod.strategies.dbs.DBS

method), 94
SimpleFSM (class in axel-

rod.strategies.finite_state_machines), 97
SimpleHMM (class in axelrod.strategies.hmm), 105
SlowTitForTwoTats2 (class in axel-

rod.strategies.titfortat), 128
SneakyTitForTat (class in axel-

rod.strategies.titfortat), 128
SoftGrudger (class in axelrod.strategies.grudger),

104
SoftJoss (class in axelrod.strategies.memoryone), 113
SolutionB1 (class in axel-

rod.strategies.finite_state_machines), 98
SolutionB5 (class in axel-

rod.strategies.finite_state_machines), 98
SpitefulTitForTat (class in axel-

rod.strategies.titfortat), 128
split_weights() (in module axel-

rod.strategies.ann), 71
Stalker (class in axelrod.strategies.stalker), 125
stimulus_update() (axel-

rod.strategies.bush_mosteller.BushMosteller
method), 91

StochasticCooperator (class in axel-
rod.strategies.memoryone), 113

StochasticNode (class in axelrod.strategies.dbs), 95
StochasticWSLS (class in axel-

rod.strategies.memoryone), 113
strategy() (axelrod.strategies.adaptive.Adaptive

method), 70
strategy() (axelrod.strategies.adaptor.AbstractAdaptor

method), 70
strategy() (axelrod.strategies.alternator.Alternator

method), 70
strategy() (axelrod.strategies.ann.ANN method), 71
strategy() (axelrod.strategies.apavlov.APavlov2006

method), 72
strategy() (axelrod.strategies.apavlov.APavlov2011

method), 72
strategy() (axelrod.strategies.appeaser.Appeaser

method), 72
strategy() (axelrod.strategies.averagecopier.AverageCopier

method), 72
strategy() (axelrod.strategies.averagecopier.NiceAverageCopier

method), 72
strategy() (axelrod.strategies.axelrod_first.FirstByAnonymous

static method), 73
strategy() (axelrod.strategies.axelrod_first.FirstByDavis

method), 73
strategy() (axelrod.strategies.axelrod_first.FirstByDowning

method), 75
strategy() (axelrod.strategies.axelrod_first.FirstByFeld

method), 75
strategy() (axelrod.strategies.axelrod_first.FirstByGraaskamp

method), 76
strategy() (axelrod.strategies.axelrod_first.FirstByGrofman

method), 76
strategy() (axelrod.strategies.axelrod_first.FirstByNydegger

method), 77
strategy() (axelrod.strategies.axelrod_first.FirstByShubik

method), 78
strategy() (axelrod.strategies.axelrod_first.FirstByTullock

method), 79
strategy() (axelrod.strategies.axelrod_second.SecondByAppold

method), 80
strategy() (axelrod.strategies.axelrod_second.SecondByBlack

method), 80
strategy() (axelrod.strategies.axelrod_second.SecondByBorufsen

method), 80
strategy() (axelrod.strategies.axelrod_second.SecondByCave

method), 81
strategy() (axelrod.strategies.axelrod_second.SecondByChampion

method), 81
strategy() (axelrod.strategies.axelrod_second.SecondByEatherley

static method), 81
strategy() (axelrod.strategies.axelrod_second.SecondByGetzler

method), 82
strategy() (axelrod.strategies.axelrod_second.SecondByGladstein

method), 82
strategy() (axelrod.strategies.axelrod_second.SecondByGraaskampKatzen

method), 82
strategy() (axelrod.strategies.axelrod_second.SecondByGrofman

method), 83
strategy() (axelrod.strategies.axelrod_second.SecondByHarrington

method), 85
strategy() (axelrod.strategies.axelrod_second.SecondByKluepfel

method), 85
strategy() (axelrod.strategies.axelrod_second.SecondByLeyvraz

method), 85
strategy() (axelrod.strategies.axelrod_second.SecondByMikkelson

method), 86
strategy() (axelrod.strategies.axelrod_second.SecondByRichardHufford

method), 86
strategy() (axelrod.strategies.axelrod_second.SecondByRowsam

method), 87
strategy() (axelrod.strategies.axelrod_second.SecondByTester

method), 87
strategy() (axelrod.strategies.axelrod_second.SecondByTidemanAndChieruzzi

method), 88
strategy() (axelrod.strategies.axelrod_second.SecondByTranquilizer

method), 89
strategy() (axelrod.strategies.axelrod_second.SecondByWeiner

method), 89
strategy() (axelrod.strategies.axelrod_second.SecondByWhite

152 Index

Axelrod Documentation, Release 0.0.1

method), 90
strategy() (axelrod.strategies.axelrod_second.SecondByWmAdams

method), 90
strategy() (axelrod.strategies.axelrod_second.SecondByYamachi

method), 90
strategy() (axelrod.strategies.better_and_better.BetterAndBetter

method), 91
strategy() (axelrod.strategies.bush_mosteller.BushMosteller

method), 91
strategy() (axelrod.strategies.calculator.Calculator

method), 91
strategy() (axelrod.strategies.cooperator.Cooperator

static method), 92
strategy() (axelrod.strategies.cooperator.TrickyCooperator

method), 92
strategy() (axelrod.strategies.cycler.AntiCycler

method), 92
strategy() (axelrod.strategies.cycler.Cycler method),

92
strategy() (axelrod.strategies.darwin.Darwin

method), 93
strategy() (axelrod.strategies.dbs.DBS method), 94
strategy() (axelrod.strategies.defector.Defector

static method), 95
strategy() (axelrod.strategies.defector.TrickyDefector

method), 95
strategy() (axelrod.strategies.doubler.Doubler

method), 95
strategy() (axelrod.strategies.finite_state_machines.FSMPlayer

method), 97
strategy() (axelrod.strategies.forgiver.Forgiver

method), 99
strategy() (axelrod.strategies.forgiver.ForgivingTitForTat

method), 99
strategy() (axelrod.strategies.gambler.Gambler

method), 99
strategy() (axelrod.strategies.geller.Geller method),

100
strategy() (axelrod.strategies.gobymajority.GoByMajority

method), 101
strategy() (axelrod.strategies.grudger.Aggravater

static method), 102
strategy() (axelrod.strategies.grudger.EasyGo static

method), 103
strategy() (axelrod.strategies.grudger.ForgetfulGrudger

method), 103
strategy() (axelrod.strategies.grudger.GeneralSoftGrudger

method), 103
strategy() (axelrod.strategies.grudger.Grudger

static method), 103
strategy() (axelrod.strategies.grudger.GrudgerAlternator

method), 103
strategy() (axelrod.strategies.grudger.OppositeGrudger

static method), 104

strategy() (axelrod.strategies.grudger.SoftGrudger
method), 104

strategy() (axelrod.strategies.grumpy.Grumpy
method), 104

strategy() (axelrod.strategies.handshake.Handshake
method), 104

strategy() (axelrod.strategies.hmm.HMMPlayer
method), 105

strategy() (axelrod.strategies.hunter.AlternatorHunter
method), 106

strategy() (axelrod.strategies.hunter.CooperatorHunter
method), 106

strategy() (axelrod.strategies.hunter.CycleHunter
method), 106

strategy() (axelrod.strategies.hunter.DefectorHunter
method), 106

strategy() (axelrod.strategies.hunter.EventualCycleHunter
method), 106

strategy() (axelrod.strategies.hunter.MathConstantHunter
method), 106

strategy() (axelrod.strategies.hunter.RandomHunter
method), 107

strategy() (axelrod.strategies.inverse.Inverse static
method), 107

strategy() (axelrod.strategies.lookerup.LookerUp
method), 108

strategy() (axelrod.strategies.mathematicalconstants.CotoDeRatio
method), 110

strategy() (axelrod.strategies.memoryone.ALLCorALLD
method), 112

strategy() (axelrod.strategies.memoryone.MemoryOnePlayer
method), 112

strategy() (axelrod.strategies.memorytwo.MEM2
method), 111

strategy() (axelrod.strategies.memorytwo.MemoryTwoPlayer
method), 112

strategy() (axelrod.strategies.meta.MetaPlayer
method), 115

strategy() (axelrod.strategies.mindcontrol.MindBender
static method), 117

strategy() (axelrod.strategies.mindcontrol.MindController
static method), 117

strategy() (axelrod.strategies.mindcontrol.MindWarper
static method), 117

strategy() (axelrod.strategies.mindreader.MindReader
method), 117

strategy() (axelrod.strategies.mindreader.MirrorMindReader
method), 118

strategy() (axelrod.strategies.mutual.Desperate
method), 118

strategy() (axelrod.strategies.mutual.Hopeless
method), 118

strategy() (axelrod.strategies.mutual.Willing
method), 118

Index 153

Axelrod Documentation, Release 0.0.1

strategy() (axelrod.strategies.negation.Negation
method), 118

strategy() (axelrod.strategies.oncebitten.FoolMeOnce
static method), 118

strategy() (axelrod.strategies.oncebitten.ForgetfulFoolMeOnce
method), 119

strategy() (axelrod.strategies.oncebitten.OnceBitten
method), 119

strategy() (axelrod.strategies.prober.CollectiveStrategy
method), 119

strategy() (axelrod.strategies.prober.Detective
method), 119

strategy() (axelrod.strategies.prober.HardProber
method), 119

strategy() (axelrod.strategies.prober.NaiveProber
method), 119

strategy() (axelrod.strategies.prober.Prober
method), 120

strategy() (axelrod.strategies.prober.Prober2
method), 120

strategy() (axelrod.strategies.prober.Prober3
method), 120

strategy() (axelrod.strategies.prober.Prober4
method), 120

strategy() (axelrod.strategies.prober.RemorsefulProber
method), 120

strategy() (axelrod.strategies.punisher.InversePunisher
method), 121

strategy() (axelrod.strategies.punisher.LevelPunisher
method), 121

strategy() (axelrod.strategies.punisher.Punisher
method), 121

strategy() (axelrod.strategies.punisher.TrickyLevelPunisher
method), 121

strategy() (axelrod.strategies.qlearner.RiskyQLearner
method), 122

strategy() (axelrod.strategies.rand.Random
method), 122

strategy() (axelrod.strategies.resurrection.DoubleResurrection
method), 122

strategy() (axelrod.strategies.resurrection.Resurrection
method), 122

strategy() (axelrod.strategies.retaliate.LimitedRetaliate
method), 123

strategy() (axelrod.strategies.retaliate.Retaliate
method), 123

strategy() (axelrod.strategies.revised_downing.RevisedDowning
method), 124

strategy() (axelrod.strategies.selfsteem.SelfSteem
method), 125

strategy() (axelrod.strategies.sequence_player.SequencePlayer
method), 124

strategy() (axelrod.strategies.shortmem.ShortMem
static method), 124

strategy() (axelrod.strategies.titfortat.AdaptiveTitForTat
method), 125

strategy() (axelrod.strategies.titfortat.AntiTitForTat
static method), 126

strategy() (axelrod.strategies.titfortat.Bully static
method), 126

strategy() (axelrod.strategies.titfortat.DynamicTwoTitsForTat
static method), 126

strategy() (axelrod.strategies.titfortat.Gradual
method), 127

strategy() (axelrod.strategies.titfortat.HardTitFor2Tats
static method), 127

strategy() (axelrod.strategies.titfortat.HardTitForTat
static method), 127

strategy() (axelrod.strategies.titfortat.NTitsForMTats
method), 127

strategy() (axelrod.strategies.titfortat.OmegaTFT
method), 128

strategy() (axelrod.strategies.titfortat.OriginalGradual
method), 128

strategy() (axelrod.strategies.titfortat.RandomTitForTat
method), 128

strategy() (axelrod.strategies.titfortat.SlowTitForTwoTats2
method), 128

strategy() (axelrod.strategies.titfortat.SneakyTitForTat
method), 128

strategy() (axelrod.strategies.titfortat.SpitefulTitForTat
method), 128

strategy() (axelrod.strategies.titfortat.SuspiciousTitForTat
static method), 129

strategy() (axelrod.strategies.titfortat.TitFor2Tats
static method), 129

strategy() (axelrod.strategies.titfortat.TitForTat
method), 129

strategy() (axelrod.strategies.titfortat.TwoTitsForTat
static method), 129

strategy() (axelrod.strategies.verybad.VeryBad
static method), 129

strategy() (axelrod.strategies.worse_and_worse.KnowledgeableWorseAndWorse
method), 130

strategy() (axelrod.strategies.worse_and_worse.WorseAndWorse
method), 130

strategy() (axelrod.strategies.worse_and_worse.WorseAndWorse2
method), 130

strategy() (axelrod.strategies.worse_and_worse.WorseAndWorse3
method), 130

SuspiciousTitForTat (class in axel-
rod.strategies.titfortat), 129

T
TF1 (class in axelrod.strategies.finite_state_machines),

98
TF2 (class in axelrod.strategies.finite_state_machines),

98

154 Index

Axelrod Documentation, Release 0.0.1

TF3 (class in axelrod.strategies.finite_state_machines),
98

ThueMorse (class in axel-
rod.strategies.sequence_player), 124

ThueMorseInverse (class in axel-
rod.strategies.sequence_player), 124

Thumper (class in axel-
rod.strategies.finite_state_machines), 98

TitFor2Tats (class in axelrod.strategies.titfortat), 129
TitForTat (class in axelrod.strategies.titfortat), 129
TrickyCooperator (class in axel-

rod.strategies.cooperator), 92
TrickyDefector (class in axel-

rod.strategies.defector), 95
TrickyLevelPunisher (class in axel-

rod.strategies.punisher), 121
try_return() (axel-

rod.strategies.axelrod_second.SecondByBorufsen
method), 80

try_return() (axel-
rod.strategies.axelrod_second.SecondByHarrington
method), 85

try_return() (axel-
rod.strategies.axelrod_second.SecondByWeiner
method), 89

try_return() (axel-
rod.strategies.axelrod_second.SecondByYamachi
method), 90

TwoTitsForTat (class in axelrod.strategies.titfortat),
129

U
update_history_by_cond() (axel-

rod.strategies.dbs.DBS method), 94
update_state() (axel-

rod.strategies.axelrod_second.SecondByTranquilizer
method), 89

UsuallyCooperates (class in axel-
rod.strategies.finite_state_machines), 98

UsuallyDefects (class in axel-
rod.strategies.finite_state_machines), 98

V
VeryBad (class in axelrod.strategies.verybad), 129

W
Willing (class in axelrod.strategies.mutual), 118
Winner12 (class in axelrod.strategies.lookerup), 109
Winner21 (class in axelrod.strategies.lookerup), 109
WinShiftLoseStay (class in axel-

rod.strategies.memoryone), 113
WinStayLoseShift (class in axel-

rod.strategies.memoryone), 113

WorseAndWorse (class in axel-
rod.strategies.worse_and_worse), 130

WorseAndWorse2 (class in axel-
rod.strategies.worse_and_worse), 130

WorseAndWorse3 (class in axel-
rod.strategies.worse_and_worse), 130

Z
ZDExtort2 (class in axel-

rod.strategies.zero_determinant), 131
ZDExtort2v2 (class in axel-

rod.strategies.zero_determinant), 131
ZDExtort3 (class in axel-

rod.strategies.zero_determinant), 131
ZDExtort4 (class in axel-

rod.strategies.zero_determinant), 131
ZDExtortion (class in axel-

rod.strategies.zero_determinant), 132
ZDGen2 (class in axelrod.strategies.zero_determinant),

132
ZDGTFT2 (class in axelrod.strategies.zero_determinant),

132
ZDMem2 (class in axelrod.strategies.gambler), 100
ZDMischief (class in axel-

rod.strategies.zero_determinant), 132
ZDSet2 (class in axelrod.strategies.zero_determinant),

132

Index 155

	Quick start
	Table of Contents
	Tutorials
	New to Game Theory and/or Python
	Research topics
	Further capabilities in the library
	Contributing

	Reference
	Background to Axelrod’s Tournament
	Play Contexts and Generic Prisoner’s Dilemma
	Tournaments
	Strategies index
	Bibliography
	Glossary

	Community
	Part of the team
	Communication
	Code of Conduct

	Citing the library

	Indices and tables
	Bibliography
	Python Module Index
	Index

