

    
      
          
            
  
Welcome to the documentation for the Axelrod Python library

Here is quick overview of the current capabilities of the library:


	Over 230 strategies including many from the literature and exciting
original contributions



	Classic strategies like TiT-For-Tat, WSLS, and variants


	Zero-Determinant and other Memory-One strategies


	Many generic strategies that can be used to define an array of popular
strategies, including finite state machines, strategies that hunt for
patterns in other strategies, and strategies that combine the effects of
many others


	Strategy transformers that augment the abilities of any strategy









	Head-to-Head matches


	Round Robin tournaments with a variety of options, including:



	noisy environments


	spatial tournaments


	probabilistically chosen match lengths









	Population dynamics



	The Moran process


	An ecological model









	Multi-processor support (not currently supported on Windows), caching for
deterministic interactions, automatically generate figures and statistics




Every strategy is categorized on a number of dimensions, including:



	Deterministic or Stochastic


	How many rounds of history used


	Whether the strategy makes use of the game matrix, the length of the
match, etc.







Furthermore the library is extensively tested with 100% coverage, ensuring
validity and reproducibility of results!


Quick start

Count the number of available players:

>>> import axelrod as axl
>>> len(axl.strategies)
237





Create matches between two players:

>>> import axelrod as axl
>>> players = (axl.Alternator(), axl.TitForTat())
>>> match = axl.Match(players, 5)
>>> interactions = match.play()
>>> interactions
[(C, C), (D, C), (C, D), (D, C), (C, D)]





Build full tournaments between groups of players:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator(), axl.TitForTat())
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Alternator', 'Tit For Tat', 'Cooperator']





Study the evolutionary process using a Moran process:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator(), axl.TitForTat())
>>> mp = axl.MoranProcess(players)
>>> populations = mp.play()
>>> populations  
[Counter({'Alternator': 1, 'Cooperator': 1, 'Tit For Tat': 1}),
 Counter({'Alternator': 1, 'Cooperator': 1, 'Tit For Tat': 1}),
 Counter({'Cooperator': 1, 'Tit For Tat': 2}),
 Counter({'Cooperator': 1, 'Tit For Tat': 2}),
 Counter({'Tit For Tat': 3})]





As well as this, the library has a growing collection of strategies. The
Strategies index gives a description of them.

For further details there is a library of Tutorials available and a
Community page with information about how to get support and/or make
contributions.
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Tutorials

This section contains a variety of tutorials related to the Axelrod library.

Contents:



	New to Game Theory and/or Python
	Installation

	Creating Matches

	Creating and running a simple tournament

	Summarising tournament results

	Visualising results

	Moran Process

	Human Interaction

	Running Axelrod’s First Tournament





	Research topics
	Noisy tournaments

	Probabilistic Ending Tournaments

	Spatial tournaments

	Moran Process on Graphs

	Approximate Moran Process

	Morality Metrics

	Ecological Variant

	Fingerprinting

	Meta-Strategies

	Evolvable Players





	Further capabilities in the library
	Accessing strategies

	Classification of strategies

	Strategy Transformers

	Accessing tournament results

	Reading and writing interactions from/to file

	Parallel processing

	Using the cache

	Setting a random seed

	Player information

	Player equality

	Using and playing different stage games





	Contributing
	Guidelines

	Contributing a strategy

	Contributing to the library

	Running tests

	Continuous integration












          

      

      

    

  

    
      
          
            
  
New to Game Theory and/or Python

This section contains a variety of tutorials that should help get you started
with the Axelrod library.

Contents:



	Installation

	Creating Matches

	Creating and running a simple tournament

	Summarising tournament results

	Visualising results
	Visualising the results of the tournament

	Visualising the distributions of wins

	Visualising the payoff matrix

	Saving all plots

	Passing various objects to plot





	Moran Process
	Moran Process with Mutation





	Human Interaction

	Running Axelrod’s First Tournament
	Selecting our players

	Creating the tournament

	Viewing the ranks of the participants

	Visualising the scores

	Other outcomes












          

      

      

    

  

    
      
          
            
  
Installation

The library requires Python 3.5.

The simplest way to install the package is to obtain it from the PyPi
repository:

$ pip install axelrod





You can also build it from source if you would like to:

$ git clone https://github.com/Axelrod-Python/Axelrod.git
$ cd Axelrod
$ python setup.py install








          

      

      

    

  

    
      
          
            
  
Creating Matches

You can create your own match between two players using the Match class.
This is often useful when designing new strategies in order to study how they
perform against specific opponents.

For example, to create a 5 turn match between Cooperator and
Alternator:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 5)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C)]





By default, a match will not be noisy, but you can introduce noise if you wish.
Noise is the probability with which any action dictated by a strategy will be
swapped:

>>> match = axl.Match(players=players, turns=5, noise=0.2)
>>> match.play()  
[(D, C), (C, D), (C, C), (C, D), (D, D)]





The result of the match is held as an attribute within the Match class.
Each time play() is called, it will overwrite the content of that
attribute:

>>> match.result  
[(D, C), (C, D), (C, C), (C, D), (D, D)]
>>> match.play()  
[(C, C), (C, C), (C, D), (C, C), (C, C)]
>>> match.result  
[(C, C), (C, C), (C, D), (C, C), (C, C)]





The result of the match can also be viewed as sparklines where cooperation is
shown as a solid block and defection as a space. Sparklines are a very concise
way to view the result and can be useful for spotting patterns:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C)]
>>> print(match.sparklines())  
█████████████████████████
█ █ █ █ █ █ █ █ █ █ █ █ █





The █ character for cooperation and a space for defection are default values
but you can use any characters you like:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C)]
>>> print(match.sparklines(c_symbol='|', d_symbol='-'))
|||||||||||||||||||||||||
|-|-|-|-|-|-|-|-|-|-|-|-|





A Match class can also score the individual turns of a match. Just call
match.scores() after play:

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Alternator())
>>> match = axl.Match(players, 25)
>>> match.play()
[(C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C), (C, D), (C, C)]
>>> match.scores()
[(3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3), (0, 5), (3, 3)]





There are various further methods:

>>> match.final_score()
(39, 99)
>>> match.final_score_per_turn()
(1.56, 3.96)
>>> match.winner()
Alternator
>>> match.cooperation()  # The count of cooperations
(25, 13)
>>> match.normalised_cooperation()  # The count of cooperations per turn
(1.0, 0.52)








          

      

      

    

  

    
      
          
            
  
Creating and running a simple tournament

The following lines of code creates a list players playing simple
strategies:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> players
[Cooperator, Defector, Tit For Tat, Grudger]





We can now create a tournament, play it, save the results and view the rank of
each player:

>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']





We can also plot these results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/demo_deterministic_strategies_boxplot.svg]

Note that in this case none of our strategies are stochastic so the boxplot
shows that there is no variation. Take a look at the Visualising results
section to see plots showing a stochastic effect.




          

      

      

    

  

    
      
          
            
  
Summarising tournament results

As shown in Creating and running a simple tournament let us create a tournament:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, turns=10, repetitions=3)
>>> results = tournament.play()





The results set can return a list of named tuples, ordered by strategy rank
that summarises the results of the tournament:

>>> summary = results.summarise()
>>> import pprint
>>> pprint.pprint(summary)
[Player(Rank=0, Name='Defector', Median_score=2.6..., Cooperation_rating=0.0, Wins=3.0, Initial_C_rate=0.0, CC_rate=...),
 Player(Rank=1, Name='Tit For Tat', Median_score=2.3..., Cooperation_rating=0..., Wins=0.0, Initial_C_rate=1.0, CC_rate=...),
 Player(Rank=2, Name='Grudger', Median_score=2.3..., Cooperation_rating=0..., Wins=0.0, Initial_C_rate=1.0, CC_rate=...),
 Player(Rank=3, Name='Cooperator', Median_score=2.0..., Cooperation_rating=1.0, Wins=0.0, Initial_C_rate=1.0, CC_rate=...)]





It is also possible to write this data directly to a csv file using the
write_summary method:

>>> results.write_summary('summary.csv')
>>> import csv
>>> with open('summary.csv', 'r') as outfile:
...     csvreader = csv.reader(outfile)
...     for row in csvreader:
...         print(row)
['Rank', 'Name', 'Median_score', 'Cooperation_rating', 'Wins', 'Initial_C_rate', 'CC_rate', 'CD_rate', 'DC_rate', 'DD_rate', 'CC_to_C_rate', 'CD_to_C_rate', 'DC_to_C_rate', 'DD_to_C_rate']
['0', 'Defector', '2.6...', '0.0', '3.0', '0.0', '0.0', '0.0', '0.4...', '0.6...', '0', '0', '0', '0']
['1', 'Tit For Tat', '2.3...', '0.7', '0.0', '1.0', '0.66...', '0.03...', '0.0', '0.3...', '1.0', '0', '0', '0']
['2', 'Grudger', '2.3...', '0.7', '0.0', '1.0', '0.66...', '0.03...', '0.0', '0.3...', '1.0', '0', '0', '0']
['3', 'Cooperator', '2.0...', '1.0', '0.0', '1.0', '0.66...', '0.33...', '0.0', '0.0', '1.0', '1.0', '0', '0']





The result set class computes a large number of detailed outcomes read about
those in Accessing tournament results.




          

      

      

    

  

    
      
          
            
  
Visualising results

This tutorial will show you briefly how to visualise some basic results


Visualising the results of the tournament

As shown in Creating and running a simple tournament, let us create a tournament, but this
time we will include a player that acts randomly:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> players.append(axl.Random())
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()





We can view these results (which helps visualise the stochastic effects):

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/demo_strategies_boxplot.svg]



Visualising the distributions of wins

We can view the distributions of wins for each strategy:

>>> p = plot.winplot()
>>> p.show()





[image: ../../_images/demo_strategies_winplot.svg]



Visualising the payoff matrix

We can also easily view the payoff matrix described in
Accessing tournament results, this becomes particularly useful when viewing the
outputs of tournaments with a large number of strategies:

>>> p = plot.payoff()
>>> p.show()





[image: ../../_images/demo_strategies_payoff.svg]



Saving all plots

The axelrod.Plot class has a method: save_all_plots that will
save all the above plots to file.



Passing various objects to plot

The library give access to underlying matplotlib axes objects of each plot, thus
the user can easily modify various aspects of a plot:

>>> import matplotlib.pyplot as plt
>>> _, ax = plt.subplots()
>>> title = ax.set_title('Payoff')
>>> xlabel = ax.set_xlabel('Strategies')
>>> p = plot.boxplot(ax=ax)
>>> p.show()





[image: ../../_images/title_labels_payoff.png]




          

      

      

    

  

    
      
          
            
  
Moran Process

The strategies in the library can be pitted against one another in the
Moran process [https://en.wikipedia.org/wiki/Moran_process], a population
process simulating natural selection.

The process works as follows. Given an
initial population of players, the population is iterated in rounds consisting
of:


	matches played between each pair of players, with the cumulative total
scores recorded


	a player is chosen to reproduce proportional to the player’s score in the
round


	a player is chosen at random to be replaced




The process proceeds in rounds until the population consists of a single player
type. That type is declared the winner. To run an instance of the process with
the library, proceed as follows:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> mp = axl.MoranProcess(players, seed=1)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Tit For Tat'





You can access some attributes of the process, such as the number of rounds:

>>> len(mp)
15





The sequence of populations:

>>> import pprint
>>> pprint.pprint(populations)  
[Counter({'Defector': 1, 'Tit For Tat': 1, 'Grudger': 1, 'Cooperator': 1}),
 Counter({'Defector': 1, 'Tit For Tat': 1, 'Grudger': 1, 'Cooperator': 1}),
 Counter({'Cooperator': 2, 'Defector': 1, 'Tit For Tat': 1}),
 Counter({'Defector': 2, 'Cooperator': 2}),
 Counter({'Cooperator': 3, 'Defector': 1}),
 Counter({'Cooperator': 3, 'Defector': 1}),
 Counter({'Defector': 2, 'Cooperator': 2}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 3, 'Cooperator': 1}),
 Counter({'Defector': 4})]





The scores in each round:

>>> for row in mp.score_history:
...     print([round(element, 1) for element in row])
[6.0, 7.0, 7.0, 7.0]
[7.0, 3.1, 7.0, 7.0]
[7.0, 3.1, 7.0, 7.0]
[7.0, 3.1, 7.0, 7.0]
[7.0, 3.1, 7.0, 7.0]
[3.0, 3.0, 5.0, 5.0]
[3.0, 3.0, 5.0, 5.0]
[3.1, 7.0, 7.0, 7.0]
[3.1, 7.0, 7.0, 7.0]
[9.0, 9.0, 9.0, 9.0]
[9.0, 9.0, 9.0, 9.0]
[9.0, 9.0, 9.0, 9.0]
[9.0, 9.0, 9.0, 9.0]
[9.0, 9.0, 9.0, 9.0]





We can plot the results of a Moran process with mp.populations_plot(). Let’s
use a larger population to get a bit more data:

>>> import random
>>> import matplotlib.pyplot as plt
>>> players = [axl.Defector(), axl.Defector(), axl.Defector(),
...        axl.Cooperator(), axl.Cooperator(), axl.Cooperator(),
...        axl.TitForTat(), axl.TitForTat(), axl.TitForTat(),
...        axl.Random()]
>>> mp = axl.MoranProcess(players=players, turns=200, seed=2)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Tit For Tat'
>>> ax = mp.populations_plot()
>>> plt.show()  





[image: ../../_images/moran_example.svg]


Moran Process with Mutation

The MoranProcess class also accepts an argument for a mutation rate.
Nonzero mutation changes the Markov process so that it no longer has absorbing
states, and will iterate forever. To prevent this, iterate with a loop (or
function like takewhile from itertools):

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> mp = axl.MoranProcess(players, mutation_rate=0.1, seed=10)
>>> for _ in mp:
...     if len(mp.population_distribution()) == 1:
...         break
>>> mp.population_distribution()
Counter({'Defector': 4})





It is possible to pass a fitness function that scales the utility values. A common one
used in the literature, [Ohtsuki2006], is \(f(s) = 1 - w + ws\) where \(w\)
denotes the intensity of selection:

>>> players = (axl.Cooperator(), axl.Defector(), axl.Defector(), axl.Defector())
>>> w = 0.95
>>> fitness_transformation = lambda score: 1 - w + w * score
>>> mp = axl.MoranProcess(players, turns=10, fitness_transformation=fitness_transformation, seed=3)
>>> populations = mp.play()
>>> mp.winning_strategy_name
'Defector'





Other types of implemented Moran processes:


	Moran Process on Graphs


	Approximate Moran Process








          

      

      

    

  

    
      
          
            
  
Human Interaction

It is possible to play interactively using the Human strategy:

>>> import axelrod as axl
>>> me = axl.Human(name='me')
>>> players = [axl.TitForTat(), me]
>>> match = axl.Match(players, turns=3)
>>> match.play() 





You will be prompted for the action to play at each turn:

Starting new match
Turn 1 action [C or D] for me: C

Turn 1: me played C, opponent played C
Turn 2 action [C or D] for me: D

Turn 2: me played D, opponent played C
Turn 3 action [C or D] for me: C
[(C, C), (C, D), (D, C)]





after this, the match object can be manipulated as described in
Creating Matches




          

      

      

    

  

    
      
          
            
  
Running Axelrod’s First Tournament

This tutorial will bring together topics from the previous tutorials to
reproduce Axelrod’s original tournament from [Axelrod1980].


Selecting our players

We will use the players from Axelrod’s first tournament which are contained
in the axelrod.axelrod_first_strategies list:

>>> import axelrod as axl
>>> first_tournament_participants_ordered_by_reported_rank = [s() for s in axl.axelrod_first_strategies]
>>> number_of_strategies = len(first_tournament_participants_ordered_by_reported_rank)
>>> for player in first_tournament_participants_ordered_by_reported_rank:
...     print(player)
Tit For Tat
First by Tideman and Chieruzzi: (D, D)
First by Nydegger
First by Grofman
First by Shubik
First by Stein and Rapoport: 0.05: (D, D)
Grudger
First by Davis: 10
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Joss: 0.9
First by Tullock
First by Anonymous
Random: 0.5







Creating the tournament

Now we create and run the tournament, we will set a seed to ensure
reproducibility and 5 repetitions to smooth the random effects. We use 5
repetitions as this is what was done in [Axelrod1980]:

>>> tournament = axl.Tournament(
...      players=first_tournament_participants_ordered_by_reported_rank,
...      turns=200,
...      repetitions=5,
...      seed=1,
... )
>>> results = tournament.play()







Viewing the ranks of the participants

The results object contains the ranked names:

>>> for name in results.ranked_names:
...     print(name)
First by Stein and Rapoport: 0.05: (D, D)
First by Grofman
First by Shubik
Tit For Tat
First by Nydegger
First by Tideman and Chieruzzi: (D, D)
Grudger
First by Davis: 10
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Tullock
First by Joss: 0.9
First by Anonymous
Random: 0.5





We see that TitForTat does not win. In fact TitForTat typically does not
win this tournament, possibly because our implementations differ from the original
strategies as their code is not available.

We can plot the reported rank (from [Axelrod1980]) versus the reproduced one:

>>> import matplotlib.pyplot as plt
>>> plt.figure(figsize=(15, 6)) 
>>> plt.plot((0, 15), (0, 15), color="grey", linestyle="--")  
>>> for original_rank, strategy in enumerate(first_tournament_participants_ordered_by_reported_rank):
...     rank = results.ranked_names.index(str(strategy))
...     if rank == original_rank:
...         symbol = "+"
...         plt.plot((rank, rank), (rank, 0), color="grey")
...     else:
...         symbol = "o"
...     plt.scatter([rank], [original_rank], marker=symbol, color="black", s=50)  
>>> plt.xticks(
...     range(number_of_strategies),
...     results.ranked_names,
...     rotation=90
... )  
>>> plt.ylabel("Reported rank")  
>>> plt.xlabel("Reproduced rank");  
>>> plt.show()





[image: ../../_images/rank_comparison.svg]



Visualising the scores

We see that the first 6 strategies do not match the ranks of the original paper,
we can take a look the variation in the scores:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/boxplot.svg]

The first 6 strategies have similar scores which could indicate that the
original work by Axelrod was not run with sufficient repetitions. Another
explanation is that all the strategies are implemented from the descriptions
given in [Axelrod1980] and there is no source code to base this on. This leads
to some strategies being ambiguous. These are all clearly explained in the
strategy docstrings. For example:

>>> print(axl.FirstByAnonymous.__doc__)

    Submitted to Axelrod's first tournament by a graduate student whose name was
    withheld.

    The description written in [Axelrod1980]_ is:

    > "This rule has a probability of cooperating, P, which is initially 30% and
    > is updated every 10 moves. P is adjusted if the other player seems random,
    > very cooperative, or very uncooperative. P is also adjusted after move 130
    > if the rule has a lower score than the other player. Unfortunately, the
    > complex process of adjustment frequently left the probability of cooperation
    > in the 30% to 70% range, and therefore the rule appeared random to many
    > other players."

    Given the lack of detail this strategy is implemented based on the final
    sentence of the description which is to have a cooperation probability that
    is uniformly random in the 30 to 70% range.

    Names:

    - (Name withheld): [Axelrod1980]_







Other outcomes

If we run the tournament with other seeds, the results are different. For
example, with 1408 Tit For Tat wins:

>>> tournament = axl.Tournament(
...      players=first_tournament_participants_ordered_by_reported_rank,
...      turns=200,
...      repetitions=5,
...      seed=1408,
... )
>>> results = tournament.play()
>>> for name in results.ranked_names:
...     print(name)
Tit For Tat
First by Stein and Rapoport: 0.05: (D, D)
First by Grofman
First by Shubik
First by Tideman and Chieruzzi: (D, D)
First by Nydegger
Grudger
First by Davis: 10
First by Graaskamp: 0.05
First by Downing
First by Feld: 1.0, 0.5, 200
First by Tullock
First by Joss: 0.9
First by Anonymous
Random: 0.5





With 136 the strategy submitted by Grofman wins:

>>> tournament = axl.Tournament(
...      players=first_tournament_participants_ordered_by_reported_rank,
...      turns=200,
...      repetitions=5,
...      seed=136
... )
>>> results = tournament.play()
>>> for name in results.ranked_names:
...     print(name)
First by Grofman
First by Stein and Rapoport: 0.05: (D, D)
Tit For Tat
First by Shubik
First by Tideman and Chieruzzi: (D, D)
First by Nydegger
Grudger
First by Davis: 10
First by Downing
First by Graaskamp: 0.05
First by Feld: 1.0, 0.5, 200
First by Joss: 0.9
First by Tullock
Random: 0.5
First by Anonymous









          

      

      

    

  

    
      
          
            
  
Research topics

This section contains descriptions of particular tools of interest to those
doing game theoretic research.

Contents:



	Noisy tournaments

	Probabilistic Ending Tournaments

	Spatial tournaments

	Moran Process on Graphs

	Approximate Moran Process

	Morality Metrics

	Ecological Variant

	Fingerprinting
	Ashlock Fingerprints

	Transitive Fingerprint





	Meta-Strategies
	Finite State Machines





	Evolvable Players
	Moran Process: Atomic Mutation for Evolvable Players

	Reproducible Seeding












          

      

      

    

  

    
      
          
            
  
Noisy tournaments

A common variation on iterated prisoner’s dilemma tournaments is to add
stochasticity in the choice of actions, simply called noise. This noise is
introduced by flipping plays between C and D with some probability that is
applied to all plays after they are delivered by the player [Bendor1993].

The presence of this persistent background noise causes some strategies to
behave substantially differently. For example, TitForTat can fall into
defection loops with itself when there is noise. While TitForTat would
usually cooperate well with itself:

C C C C C ...
C C C C C ...





Noise can cause a C to flip to a D (or vice versa), disrupting the cooperative
chain:

C C C D C D C D D D ...
C C C C D C D D D D ...





To create a noisy tournament you simply need to add the noise argument:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> noise = 0.1
>>> tournament = axl.Tournament(players, noise=noise)
>>> results = tournament.play()
>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/demo_strategies_noisy_boxplot.svg]

Here is how the distribution of wins now looks:

>>> p = plot.winplot()
>>> p.show()





[image: ../../_images/demo_strategies_noisy_winplot.svg]




          

      

      

    

  

    
      
          
            
  
Probabilistic Ending Tournaments

It is possible to create a tournament where the length of each Match is not
constant for all encounters: after each turn the Match ends with a given
probability, [Axelrod1980b]:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, prob_end=0.5)





We can view the results in a similar way as described in
Accessing tournament results:

>>> results = tournament.play()
>>> m = results.payoff_matrix
>>> for row in m:  
...     print([round(ele, 1) for ele in row]) # Rounding output  

[3.0, 0.0, 3.0, 3.0]
[5.0, 1.0, 3.7, 3.6]
[3.0, 0.3, 3.0, 3.0]
[3.0, 0.4, 3.0, 3.0]





We see that Cooperator always scores 0 against Defector but
other scores seem variable as they are effected by the length of each match.

We can (as before) obtain the ranks for our players:

>>> results.ranked_names  
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']





We can plot the results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/prob_end_boxplot.svg]

We can also view the length of the matches played by each player. The plot shows
that the length of each match (for each player) is not the same. The median
length is 4 which is the expected value with the probability of a match ending
being 0.5.

>>> p = plot.lengthplot()
>>> p.show()





[image: ../../_images/prob_end_lengthplot.svg]




          

      

      

    

  

    
      
          
            
  
Spatial tournaments

A spatial tournament is defined on a graph where the nodes correspond to players
and edges define whether or not a given player pair will have a match.

The initial work on spatial tournaments was done by Nowak and May in a 1992
paper: [Nowak1992].

Additionally, Szabó and Fáth in their 2007 paper [Szabo2007] consider a variety
of graphs, such as lattices, small world, scale-free graphs and evolving
networks.

Let’s create a tournament where Cooperator and Defector do not
play each other and neither do TitForTat and Grudger :

[image: ../../_images/spatial.png]
Note that the edges have to be given as a list of tuples of player
indices:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> edges = [(0, 2), (0, 3), (1, 2), (1, 3)]





To create a spatial tournament you pass the edges to the
Tournament class:

>>> spatial_tournament = axl.Tournament(players, edges=edges)
>>> results = spatial_tournament.play()





We can plot the results:

>>> plot = axl.Plot(results)
>>> p = plot.boxplot()
>>> p.show()





[image: ../../_images/spatial_results.png]
We can, like any other tournament, obtain the ranks for our players:

>>> results.ranked_names
['Cooperator', 'Tit For Tat', 'Grudger', 'Defector']





Let’s run a small tournament of 2 turns and 2 repetitions
and obtain the interactions:

>>> spatial_tournament = axl.Tournament(players ,turns=2, repetitions=2, edges=edges)
>>> results = spatial_tournament.play()
>>> results.payoffs
[[[], [], [3.0, 3.0], [3.0, 3.0]], [[], [], [3.0, 3.0], [3.0, 3.0]], [[3.0, 3.0], [0.5, 0.5], [], []], [[3.0, 3.0], [0.5, 0.5], [], []]]





As anticipated not all players interact with each other.

It is also possible to create a probabilistic ending spatial tournament:

>>> prob_end_spatial_tournament = axl.Tournament(players, edges=edges, prob_end=.1, repetitions=1, seed=10)
>>> prob_end_results = prob_end_spatial_tournament.play()





We see that the match lengths are no longer all equal:

>>> prob_end_results.match_lengths
[[[0, 0, 20.0, 1.0], [0, 0, 46.0, 13.0], [20.0, 46.0, 0, 0], [1.0, 13.0, 0, 0]]]








          

      

      

    

  

    
      
          
            
  
Moran Process on Graphs

The library also provides a graph-based Moran process [Shakarian2013] with
MoranProcess.  To use this feature you must supply at least one
Axelrod.graph.Graph object, which can be initialized with just a list of
edges:

edges = [(source_1, target1), (source2, target2), ...]





The nodes can be any hashable object (integers, strings, etc.). For example:

>>> import axelrod as axl
>>> from axelrod.graph import Graph
>>> edges = [(0, 1), (1, 2), (2, 3), (3, 1)]
>>> graph = Graph(edges)





Graphs are undirected by default but you can pass directed=True to
create a directed graph. Various intermediates such as the list of neighbors
are cached for efficiency by the graph object.

A Moran process can be invoked with one or two graphs. The first graph, the
interaction graph, dictates how players are matched up in the scoring phase.
Each player plays a match with each neighbor. The second graph dictates how
players replace another during reproduction. When an individual is selected to
reproduce, it replaces one of its neighbors in the reproduction graph. If only
one graph is supplied to the process, the two graphs are assumed to be the same.

To create a graph-based Moran process, use a graph as follows:

>>> from axelrod.graph import Graph
>>> edges = [(0, 1), (1, 2), (2, 3), (3, 1)]
>>> graph = Graph(edges)
>>> players = [axl.Cooperator(), axl.Cooperator(), axl.Cooperator(), axl.Defector()]
>>> mp = axl.MoranProcess(players, interaction_graph=graph, seed=40)
>>> results = mp.play()
>>> mp.population_distribution()
Counter({'Defector': 4})





You can supply the reproduction_graph as a keyword argument. The
standard Moran process is equivalent to using a complete graph with no loops
for the interaction_graph and with loops for the
reproduction_graph.




          

      

      

    

  

    
      
          
            
  
Approximate Moran Process

Due to the high computational cost of a single Moran process, an approximate
Moran process is implemented that can make use of cached outcomes of games. The
following code snippet will generate a Moran process in which the outcomes of
the matches played by a Random: 0.5 are sampled from one possible
outcome against each opponent (Defector and Random: 0.5). First
the cache is built by passing counter objects of outcomes:

>>> import axelrod as axl
>>> from collections import Counter
>>> cached_outcomes = {}
>>> cached_outcomes[("Random: 0.5", "Defector")] = axl.Pdf(Counter([(1, 1)]))
>>> cached_outcomes[("Random: 0.5", "Random: 0.5")] = axl.Pdf(Counter([(3, 3)]))
>>> cached_outcomes[("Defector", "Defector")] = axl.Pdf(Counter([(1, 1)]))





Now let us create an Approximate Moran Process:

>>> players = [axl.Defector(), axl.Random(), axl.Random()]
>>> amp = axl.ApproximateMoranProcess(players, cached_outcomes, seed=5)
>>> results = amp.play()
>>> amp.population_distribution()
Counter({'Random: 0.5': 3})





Note that by nature of being an approximation, it’s possible that the results of an
ApproximateMoranProcess may not always match the results of a standard MoranProcess,
even for the same random seed. We see that, for this random seed, the Random: 0.5
won this Moran process. This is not what happens in a standard Moran process where the
Random: 0.5 player will not win:

>>> mp = axl.MoranProcess(players, seed=5)
>>> results = mp.play()
>>> mp.population_distribution()
Counter({'Defector': 3})








          

      

      

    

  

    
      
          
            
  
Morality Metrics

Tyler Singer-Clark’s June 2014 paper, “Morality Metrics On Iterated Prisoner’s
Dilemma Players” [Singer-Clark2014]), describes several interesting metrics which
may be used to analyse IPD tournaments all of which are available within the
ResultSet class. (Tyler’s paper is available here:
http://www.scottaaronson.com/morality.pdf).

Each metric depends upon the cooperation rate of the players, defined by Tyler
Singer-Clark as:


\[CR(b) = \frac{C(b)}{TT}\]

where C(b) is the total number of turns where a player chose to cooperate and TT
is the total number of turns played.

A matrix of cooperation rates is available within a tournament’s ResultSet:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> [[round(float(ele), 3) for ele in row] for row in results.normalised_cooperation]
[[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], [1.0, 0.005, 1.0, 1.0], [1.0, 0.005, 1.0, 1.0]]





There is also a ‘good partner’ matrix showing how often a player cooperated at
least as much as its opponent:

>>> results.good_partner_matrix
[[0, 10, 10, 10], [0, 0, 0, 0], [10, 10, 0, 10], [10, 10, 10, 0]]





Each of the metrics described in Tyler’s paper is available as follows (here they are rounded to 2 digits):

>>> [round(ele, 2) for ele in results.cooperating_rating]
[1.0, 0.0, 0.67..., 0.67...]
>>> [round(ele, 2) for ele in results.good_partner_rating]
[1.0, 0.0, 1.0, 1.0]
>>> [round(ele, 2) for ele in results.eigenjesus_rating]
[0.58, 0.0, 0.58, 0.58]
>>> [round(ele, 2) for ele in results.eigenmoses_rating]
[0.37, -0.37, 0.6, 0.6]








          

      

      

    

  

    
      
          
            
  
Ecological Variant

In Axelrod’s original work an ecological approach based on the payoff matrix of
the tournament was used to study the evolutionary stability of each strategy.
Whilst this bears some comparison to the Moran Process, the latter is
much more widely used in the literature.

To study the evolutionary stability of each strategy it is possible to create an
ecosystem based on the payoff matrix of a tournament:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger(),
...            axl.Random()]
>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> eco = axl.Ecosystem(results)
>>> eco.reproduce(100) # Evolve the population over 100 time steps





Here is how we obtain a nice stackplot of the system evolving over time:

>>> plot = axl.Plot(results)
>>> p = plot.stackplot(eco)
>>> p.show()





[image: ../../_images/demo_strategies_stackplot.svg]




          

      

      

    

  

    
      
          
            
  
Fingerprinting


Ashlock Fingerprints

In [Ashlock2008], [Ashlock2009] a methodology for obtaining visual
representation of a strategy’s behaviour is described.  The basic method is to
play the strategy against a probe strategy with varying noise parameters.
These noise parameters are implemented through the JossAnnTransformer.
The Joss-Ann of a strategy is a new strategy which has a probability x
of cooperating, a probability y of defecting, and otherwise uses the
response appropriate to the original strategy.  We can then plot the expected
score of the strategy against x and y and obtain a heat plot
over the unit square.  When x + y >= 1 the JossAnn is created
with parameters (1-y, 1-x) and plays against the Dual of the probe
instead. A full definition and explanation is given in
[Ashlock2008], [Ashlock2009].

Here is how to create a fingerprint of WinStayLoseShift using
TitForTat as a probe:

>>> import axelrod as axl
>>> strategy = axl.WinStayLoseShift
>>> probe = axl.TitForTat
>>> af = axl.AshlockFingerprint(strategy, probe)
>>> data = af.fingerprint(turns=10, repetitions=2, step=0.2, seed=1)
>>> data
{...
>>> data[(0, 0)]
3.0





The fingerprint method returns a dictionary mapping coordinates of the
form (x, y) to the mean score for the corresponding interactions.
We can then plot the above to get:

>>> p = af.plot()
>>> p.show()





[image: ../../_images/WSLS_small.png]
In reality we would need much more detail to make this plot useful.

Running the above with the following parameters:

>>> af.fingerprint(turns=50, repetitions=2, step=0.01)  





We get the plot:

[image: ../../_images/WSLS_large.png]
We are also able to specify a matplotlib colour map, interpolation and can
remove the colorbar and axis labels:

>>> p = af.plot(cmap='PuOr', interpolation='bicubic', colorbar=False, labels=False)  
>>> p.show()





[image: ../../_images/WSLS_large_alt.png]
Note that it is also possible to pass a player instance to be fingerprinted
and/or as a probe.
This allows for the fingerprinting of parametrized strategies:

>>> player = axl.Random(p=.1)
>>> probe = axl.GTFT(p=.9)
>>> af = axl.AshlockFingerprint(player, probe)
>>> data = af.fingerprint(turns=10, repetitions=2, step=0.2, seed=2)
>>> data
{...
>>> data[(0, 0)]
3.75







Transitive Fingerprint

Another implemented fingerprint is the transitive fingerprint. The
transitive fingerprint represents the cooperation rate of a strategy against a
set of opponents over a number of turns.

By default the set of opponents consists of 50 Random players that
cooperate with increasing probability. This is how to obtain the transitive
fingerprint for TitForTat:

>>> player = axl.TitForTat()
>>> tf = axl.TransitiveFingerprint(player)
>>> data = tf.fingerprint(turns=40, seed=3)





The data produced is a numpy array showing the cooperation rate against
a given opponent (row) in a given turn (column):

>>> data.shape
(50, 40)





It is also possible to visualise the fingerprint:

>>> p = tf.plot()
>>> p.show()





[image: ../../_images/transitive_TFT.png]
It is also possible to fingerprint against a given set of opponents:

>>> opponents = [s() for s in axl.demo_strategies]
>>> tf = axl.TransitiveFingerprint(player, opponents=opponents)
>>> data = tf.fingerprint(turns=5, repetitions=10, seed=4)





The name of the opponents can be displayed in the plot:

>>> p = tf.plot(display_names=True)
>>> p.show()





[image: ../../_images/transitive_TFT_against_demo.png]




          

      

      

    

  

    
      
          
            
  
Meta-Strategies


Finite State Machines

A finite state machine (FSM) is a general computation model.  In the context of Axelrod, it’s a set of states and “transitions.”  A transition for a given state/previous-opponent-action combination says how the strategy will respond, both in what action it will take and in what state it will transitions to. That is a transition will specify that in state \(a\), the strategy will respond to action \(X\) by taking action \(Y\) and moving to state \(b\) (which will tell us which transitions to use in later moves).  We may write this transition \((a, X, b, Y)\).  For Axelrod, a FSM must have a full set of transitions, which specifies a unique response for each
state/previous-opponent-action combination.

See [Harper2017] for a more-detailed explanation.

Representing a strategy as a finite state machine has been useful in some research (see [Harper2017] or [Ashlock2006b]).  Though it’s theoretically possible to represent all strategies as FSMs, this is impractical for most strategies.  However, some strategies lend themselves naturally to a FSM representation.  For example, for the Iterated Prisoner’s Dilemma, we could consider a strategy that cooperates (C) until the opponent defects (D) twice in a row, then defect forever thereafter.  (We’ll call this strategy grudger_2 for the example.)  We could call state 1, the state where the opponent hasn’t started a defect streak; state 2, the state where the opponent is on a 1-defect streak; and state 3, the state where the opponent has defected twice in a row at some point.  Then the transitions would be:

>>> from axelrod import Action
>>> C, D = Action.C, Action.D
>>> grudger_2_transitions = (
...    (1, C, 1, C),
...    (1, D, 2, C),
...    (2, C, 1, C),
...    (2, D, 3, D),
...    (3, C, 3, D),
...    (3, D, 3, D)
... )





The Axelrod library includes a FSM meta-strategy player, which will you let you specify a player’s strategy by this transition matrix, along with an initial state and initial action.  The syntax for this is:

>>> from axelrod.strategies.finite_state_machines import FSMPlayer
>>> grudger_2 = FSMPlayer(transitions=grudger_2_transitions,
...                       initial_state=1, initial_action=C)





The library also includes the functionality to compute the memory from the set of transitions.  In the grudger_2 example, the memory would be 2.  Because either the strategy’s own previous move was a defect (in which case, continue to defect) or we just need to check if the last two opponent moves were defects or not.  Though this function takes the transitions in a slightly different format:

>>> transition_dict = {
...    (t[0], t[1]): (t[2], t[3]) for t in grudger_2_transitions
... }
>>> from axelrod.compute_finite_state_machine_memory import *
>>> get_memory_from_transitions(transitions=transition_dict,
...                             initial_state=1)
2









          

      

      

    

  

    
      
          
            
  
Evolvable Players

Several strategies in the library derive from EvolvablePlayer which specifies methods
allowing evolutionary or particle swarm algorithms to be used with these strategies. The
Axelrod Dojo library [https://github.com/Axelrod-Python/axelrod-dojo] [Axelrod1980]
contains implementations of both algorithms for use with the Axelrod library. Examples include
FSMPlayers, ANN (neural networks), and LookerUp and Gambler (lookup tables).

New EvolvablePlayer subclasses can be added to the library. Any strategy that can
define mutation and crossover methods can be used with the evolutionary algorithm
and the atomic mutation version of the Moran process. To use the particle swarm algorithms, methods
to serialize the strategy to and from a vector of floats must be defined.


Moran Process: Atomic Mutation for Evolvable Players

Additionally, the Moran process implementation supports a second style of mutation suitable for
evolving new strategies utilizing the EvolvablePlayer class via its mutate method.
This is in contrast to the transitional mutation that selects one of the other player types rather than (possibly)
generating a new player variant. To use this mutation style set mutation_method=atomic in the initialisation
of the Moran process:

>>> import axelrod as axl
>>> C = axl.Action.C
>>> players = [axl.EvolvableFSMPlayer(num_states=2, initial_state=1, initial_action=C) for _ in range(5)]
>>> mp = axl.MoranProcess(players, turns=10, mutation_method="atomic", seed=1)
>>> population = mp.play()  





Note that this may cause the Moran process to fail to converge, if the mutation rates are very high or the
population size very large.  See Moran Process for more information.



Reproducible Seeding

EvolvablePlayers are inherently stochastic. For reproducibility of results, they can be seeded. When
using the Moran process, a process level seed is sufficient. Child seeds will be created and propagated
in a reproducible way. If initialized without a seed, an EvolvablePlayer will be given a
random seed in a non-reproducible way.





          

      

      

    

  

    
      
          
            
  
Further capabilities in the library

This section shows some of the more intricate capabilities of the library.

Contents:



	Accessing strategies

	Classification of strategies

	Strategy Transformers
	What is a Strategy Transformer?

	Included Transformers

	Composing Transformers

	Usage as Class Decorators

	Writing New Transformers





	Accessing tournament results
	Wins

	Match lengths

	Scores

	Normalised scores

	Ranking

	Ranked names

	Payoffs

	Payoff matrix

	Payoff standard deviation

	Score differences

	Payoff difference means

	Cooperation counts

	Normalised cooperation

	State distribution counts

	Normalised state distribution

	State to action distribution counts

	Normalised state to action distribution

	Initial cooperation counts

	Initial cooperation rates

	Morality Metrics





	Reading and writing interactions from/to file

	Parallel processing

	Using the cache
	Caching a Match

	Caching a Tournament

	Caching a Moran Process





	Setting a random seed
	Matches

	Tournaments

	Moran Process

	Fingerprints





	Player information

	Player equality

	Using and playing different stage games








          

      

      

    

  

    
      
          
            
  
Accessing strategies

All of the strategies are accessible from the main name space of the library.
For example:

>>> import axelrod as axl
>>> axl.TitForTat()
Tit For Tat
>>> axl.Cooperator()
Cooperator





The main strategies which obey the rules of Axelrod’s original tournament
can be found in a list: axelrod.strategies:

>>> axl.strategies
[...





This makes creating a full
tournament very straightforward:

>>> players = [s() for s in axl.strategies]
>>> tournament = axl.Tournament(players)





There are a list of various other strategies in the library to make it
easier to create a variety of tournaments:

>>> axl.demo_strategies  # 5 simple strategies useful for demonstration.
[...
>>> axl.basic_strategies  # A set of basic strategies.
[...
>>> axl.long_run_time_strategies  # These have a high computational cost
[...





Furthermore there are some strategies that ‘cheat’ (for example by modifying
their opponents source code). These can be found in
axelrod.cheating_strategies:

>>> axl.cheating_strategies
[...





All of the strategies in the library are contained in:
axelrod.all_strategies:

>>> axl.all_strategies
[...





All strategies are also classified, you can read more about that in
Classification of strategies.




          

      

      

    

  

    
      
          
            
  
Classification of strategies

Due to the large number of strategies, every class and instance of the class has
a classifier attribute which classifies that strategy according to
various dimensions.

Here is the classifier for the Cooperator strategy:

>>> import axelrod as axl
>>> expected_dictionary = {
...    'manipulates_state': False,
...    'long_run_time': False,
...    'stochastic': False,
...    'manipulates_source': False,
...    'inspects_source': False,
...    'memory_depth': 0
... }  # Order of this dictionary might be different on your machine
>>> axl.Cooperator.classifier == expected_dictionary
True





Note that instances of the class also have this classifier:

>>> s = axl.Cooperator()
>>> s.classifier == expected_dictionary
True





The instance starts with a copy of the class’s classifier dictionary, but is
allowed to change this classifier dictionary at any point, and many
strategies do so upon initialization.

In addition to the classifier dictionary, each classifier is defined with
some logic that maps classifier definitions to values.  To learn the
classification of a strategy, we first look in the strategy’s classifier
dictionary, then if the key is not present, then we refer to this logic.
This logic must be defined for a class, and not specific instances.

To lookup the classifier of a strategy, using the classifier dict, or the
strategy’s logic as default, we use Classifiers[<classifier>](
<strategy>):

>>> from axelrod import Classifiers
>>> Classifiers['memory_depth'](axl.TitForTat())
1
>>> Classifiers['stochastic'](axl.Random())
True





We can use this classification to generate sets of strategies according to
filters which we define in a ‘filterset’ dictionary and then pass to the
‘filtered_strategies’ function. For example, to identify all the stochastic
strategies:

>>> filterset = {
...     'stochastic': True
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
88





Or, to find out how many strategies only use 1 turn worth of memory to
make a decision:

>>> filterset = {
...     'memory_depth': 1
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
32





Multiple filters can be specified within the filterset dictionary. To specify a
range of memory_depth values, we can use the ‘min_memory_depth’ and
‘max_memory_depth’ filters:

>>> filterset = {
...     'min_memory_depth': 1,
...     'max_memory_depth': 4
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
55





We can also identify strategies that make use of particular properties of the
tournament. For example, here is the number of strategies that  make use of the
length of each match of the tournament:

>>> filterset = {
...     'makes_use_of': ['length']
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
22





Note that in the filterset dictionary, the value for the ‘makes_use_of’ key
must be a list. Here is how we might identify the number of strategies that use
both the length of the tournament and the game being played:

>>> filterset = {
...     'makes_use_of': ['length', 'game']
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
15





Some strategies have been classified as having a particularly long run time:

>>> filterset = {
...     'long_run_time': True
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
18





Strategies that manipulate_source, manipulate_state
and/or inspect_source return False for the
Classifier.obey_axelrod function:

>>> s = axl.MindBender()
>>> axl.Classifiers.obey_axelrod(s)
False
>>> s = axl.TitForTat()
>>> axl.Classifiers.obey_axelrod(s)
True








          

      

      

    

  

    
      
          
            
  
Strategy Transformers


What is a Strategy Transformer?

A strategy transformer is a function that modifies an existing strategy. For
example, FlipTransformer takes a strategy and flips the actions from
C to D and D to C:

>>> import axelrod as axl
>>> from axelrod.strategy_transformers import *
>>> FlippedCooperator = FlipTransformer()(axl.Cooperator)
>>> player = FlippedCooperator()
>>> opponent = axl.Cooperator()
>>> player.strategy(opponent)
D
>>> opponent.strategy(player)
C





Our player was switched from a Cooperator to a Defector when
we applied the transformer. The transformer also changed the name of the
class and player:

>>> player.name
'Flipped Cooperator'
>>> FlippedCooperator.name
'Flipped Cooperator'





This behavior can be suppressed by setting the name_prefix argument:

>>> FlippedCooperator = FlipTransformer(name_prefix=None)(axl.Cooperator)
>>> player = FlippedCooperator()
>>> player.name
'Cooperator'





Note carefully that the transformer returns a class, not an instance of a class.
This means that you need to use the Transformed class as you would normally to
create a new instance:

>>> from axelrod.strategy_transformers import NoisyTransformer
>>> player = NoisyTransformer(0.5)(axl.Cooperator)()





rather than NoisyTransformer(0.5)(axl.Cooperator()) or just NoisyTransformer(0.5)(axl.Cooperator).



Included Transformers

The library includes the following transformers:


	ApologyTransformer: Apologizes after a round of (D, C):

 >>> ApologizingDefector = ApologyTransformer([D], [C])(axl.Defector)
 >>> player = ApologizingDefector()

You can pass any two sequences in. In this example the player would apologize
after two consequtive rounds of `(D, C)`::

    >>> ApologizingDefector = ApologyTransformer([D, D], [C, C])(axl.Defector)
    >>> player = ApologizingDefector()







	DeadlockBreakingTransformer: Attempts to break (D, C) -> (C, D) deadlocks by cooperating:

>>> DeadlockBreakingTFT = DeadlockBreakingTransformer()(axl.TitForTat)
>>> player = DeadlockBreakingTFT()







	DualTransformer: The Dual of a strategy will return the exact opposite set of moves to the original strategy when both are faced with the same history. [Ashlock2008]:

>>> DualWSLS = DualTransformer()(axl.WinStayLoseShift)
>>> player = DualWSLS()







	FlipTransformer: Flips all actions:

>>> FlippedCooperator = FlipTransformer()(axl.Cooperator)
>>> player = FlippedCooperator()







	FinalTransformer(seq=None): Ends the tournament with the moves in the sequence seq, if the tournament_length is known. For example, to obtain a cooperator that defects on the last two rounds:

>>> FinallyDefectingCooperator = FinalTransformer([D, D])(axl.Cooperator)
>>> player = FinallyDefectingCooperator()







	ForgiverTransformer(p): Flips defections with probability p:

>>> ForgivinDefector = ForgiverTransformer(0.1)(axl.Defector)
>>> player = ForgivinDefector()







	GrudgeTransformer(N): Defections unconditionally after more than N defections:

>>> GrudgingCooperator = GrudgeTransformer(2)(axl.Cooperator)
>>> player = GrudgingCooperator()







	InitialTransformer(seq=None): First plays the moves in the sequence seq, then plays as usual. For example, to obtain a defector that cooperates on the first two rounds:

>>> InitiallyCooperatingDefector = InitialTransformer([C, C])(axl.Defector)
>>> player = InitiallyCooperatingDefector()







	JossAnnTransformer(probability): Where probability = (x, y), the Joss-Ann of a strategy is a new strategy which has a probability x of choosing the move C, a probability y of choosing the move D, and otherwise uses the response appropriate to the original strategy. [Ashlock2008]:

>>> JossAnnTFT = JossAnnTransformer((0.2, 0.3))(axl.TitForTat)
>>> player = JossAnnTFT()







	MixedTransformer: Randomly plays a mutation to another strategy (or
set of strategies. Here is the syntax to do this with a set of strategies:

>>> strategies = [axl.Grudger, axl.TitForTat]
>>> probability = [.2, .3]  # .5 chance of mutated to one of above
>>> player =  MixedTransformer(probability, strategies)(axl.Cooperator)





Here is the syntax when passing a single strategy:

>>> strategy = axl.Grudger
>>> probability = .2
>>> player =  MixedTransformer(probability, strategy)(axl.Cooperator)







	NiceTransformer(): Prevents a strategy from defecting if the opponent
has not yet defected:

>>> NiceDefector = NiceTransformer()(axl.Defector)
>>> player = NiceDefector()







	NoisyTransformer(noise): Flips actions with probability noise:

>>> NoisyCooperator = NoisyTransformer(0.5)(axl.Cooperator)
>>> player = NoisyCooperator()







	RetaliationTransformer(N): Retaliation N times after a defection:

>>> TwoTitsForTat = RetaliationTransformer(2)(axl.Cooperator)
>>> player = TwoTitsForTat()







	RetaliateUntilApologyTransformer(): adds TitForTat-style retaliation:

>>> TFT = RetaliateUntilApologyTransformer()(axl.Cooperator)
>>> player = TFT()







	TrackHistoryTransformer: Tracks History internally in the
Player instance in a variable _recorded_history. This allows a
player to e.g. detect noise.:

>>> player = TrackHistoryTransformer()(axl.Random)()











Composing Transformers

Transformers can be composed to form new composers, in two ways. You can
simply chain together multiple transformers:

>>> cls1 = FinalTransformer([D,D])(InitialTransformer([D,D])(axl.Cooperator))
>>> p1 = cls1()





This defines a strategy that cooperates except on the first two and last two
rounds. Alternatively, you can make a new class using
compose_transformers:

>>> cls1 = compose_transformers(FinalTransformer([D, D]), InitialTransformer([D, D]))
>>> p1 = cls1(axl.Cooperator)()
>>> p2 = cls1(axl.Defector)()







Usage as Class Decorators

Transformers can also be used to decorate existing strategies. For example,
the strategy BackStabber defects on the last two rounds. We can encode this
behavior with a transformer as a class decorator:

@FinalTransformer([D, D]) # End with two defections
class BackStabber(Player):
    """
    Forgives the first 3 defections but on the fourth
    will defect forever. Defects on the last 2 rounds unconditionally.
    """

    name = 'BackStabber'
    classifier = {
        'memory_depth': float('inf'),
        'stochastic': False,
        'inspects_source': False,
        'manipulates_source': False,
        'manipulates_state': False
    }

    def strategy(self, opponent):
        if not opponent.history:
            return C
        if opponent.defections > 3:
            return D
        return C







Writing New Transformers

To make a new transformer, you need to define a strategy wrapping function with
the following signature:

def strategy_wrapper(player, opponent, proposed_action, *args, **kwargs):
    """
    Strategy wrapper functions should be of the following form.

    Parameters
    ----------
    player: Player object or subclass (self)
    opponent: Player object or subclass
    proposed_action: an axelrod.Action, C or D
        The proposed action by the wrapped strategy
        proposed_action = Player.strategy(...)
    args, kwargs:
        Any additional arguments that you need.

    Returns
    -------
    action: an axelrod.Action, C or D

    """

    # This example just passes through the proposed_action
    return proposed_action





The proposed action will be the outcome of:

self.strategy(player)





in the underlying class (the one that is transformed). The strategy_wrapper still
has full access to the player and the opponent objects and can have arguments.

To make a transformer from the strategy_wrapper function, use
StrategyTransformerFactory, which has signature:

def StrategyTransformerFactory(strategy_wrapper, name_prefix=""):
    """Modify an existing strategy dynamically by wrapping the strategy
    method with the argument `strategy_wrapper`.

    Parameters
    ----------
    strategy_wrapper: function
        A function of the form `strategy_wrapper(player, opponent, proposed_action, *args, **kwargs)`
        Can also use a class that implements
            def __call__(self, player, opponent, action)
    name_prefix: string, "Transformed "
        A string to prepend to the strategy and class name
    """





So we use StrategyTransformerFactory with strategy_wrapper:

TransformedClass = StrategyTransformerFactory(generic_strategy_wrapper)
Cooperator2 = TransformedClass(*args, **kwargs)(axl.Cooperator)





If your wrapper requires no arguments, you can simply proceed as follows:

>>> TransformedClass = StrategyTransformerFactory(generic_strategy_wrapper)()
>>> Cooperator2 = TransformedClass(axl.Cooperator)





For more examples, see axelrod/strategy_transformers.py.





          

      

      

    

  

    
      
          
            
  
Accessing tournament results

This tutorial will show you how to access the various results of a tournament:


	Wins: the number of matches won by each player


	Match lengths: the number of turns of each match played by each player
(relevant for tournaments with probabilistic ending).


	Scores: the total scores of each player.


	Normalised scores: the scores normalised by matches played and turns.


	Ranking: ranking of players based on median score.


	Ranked names: names of players in ranked order.


	Payoffs: average payoff per turn of each player.


	Payoff matrix: the payoff matrix showing the payoffs of each row player
against each column player.


	Payoff standard deviation: the standard deviation of the payoffs matrix.


	Score differences: the score difference between each player.


	Payoff difference means: the mean score differences.


	Cooperation counts: the number of times each player cooperated.


	Normalised cooperation: cooperation count per turn.


	Normalised cooperation: cooperation count per turn.


	State distribution: the count of each type of state of a match


	Normalised state distribution: the normalised count of each type of state of a
match


	State to action distribution: the count of each type of state to action pair
of a match


	Normalised state distribution: the normalised count of each type of state to
action pair of a match


	Initial cooperation count: the count of initial cooperation by each player.


	Initial cooperation rate: the rate of initial cooperation by each player.


	Cooperation rating: cooperation rating of each player


	Vengeful cooperation: a morality metric from the literature (see
Morality Metrics).


	Good partner matrix: a morality metric from [Singer-Clark2014].


	Good partner rating: a morality metric from [Singer-Clark2014].


	Eigenmoses rating: a morality metric from [Singer-Clark2014].


	Eigenjesus rating: a morality metric from [Singer-Clark2014].




As shown in Creating and running a simple tournament let us create a tournament:

>>> import axelrod as axl
>>> players = [axl.Cooperator(), axl.Defector(),
...            axl.TitForTat(), axl.Grudger()]
>>> tournament = axl.Tournament(players, turns=10, repetitions=3)
>>> results = tournament.play()






Wins

This gives the number of wins obtained by each player:

>>> results.wins
[[0, 0, 0], [3, 3, 3], [0, 0, 0], [0, 0, 0]]





The Defector is the only player to win any matches (all other matches
are ties).



Match lengths

This gives the length of the matches played by each player:

>>> import pprint  # Nicer formatting of output
>>> pprint.pprint(results.match_lengths)
[[[10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0]],
 [[10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0]],
 [[10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0],
  [10.0, 10.0, 10.0, 10.0]]]





Every player plays 10 turns against every other player (including themselves)
for every repetition of the tournament.



Scores

This gives all the total tournament scores (per player and per repetition):

>>> results.scores
[[60, 60, 60], [78, 78, 78], [69, 69, 69], [69, 69, 69]]







Normalised scores

This gives the scores, averaged per opponent and turns:

>>> results.normalised_scores  
[[2.0, 2.0, 2.0], [2.6, 2.6, 2.6], [2.3, 2.3, 2.3], [2.3, 2.3, 2.3]]





We see that Cooperator got on average a score of 2 per turn per opponent:

>>> results.normalised_scores[0]
[2.0, 2.0, 2.0]







Ranking

This gives the ranked index of each player:

>>> results.ranking
[1, 2, 3, 0]





The first player has index 1 (Defector) and the last has index 0
(Cooperator).



Ranked names

This gives the player names in ranked order:

>>> results.ranked_names
['Defector', 'Tit For Tat', 'Grudger', 'Cooperator']







Payoffs

This gives for each player, against each opponent every payoff received for
each repetition:

>>> pprint.pprint(results.payoffs)  
[[[3.0, 3.0, 3.0], [0.0, 0.0, 0.0], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]],
 [[5.0, 5.0, 5.0], [1.0, 1.0, 1.0], [1.4, 1.4, 1.4], [1.4, 1.4, 1.4]],
 [[3.0, 3.0, 3.0], [0.9, 0.9, 0.9], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]],
 [[3.0, 3.0, 3.0], [0.9, 0.9, 0.9], [3.0, 3.0, 3.0], [3.0, 3.0, 3.0]]]







Payoff matrix

This gives the mean payoff of each player against every opponent:

>>> pprint.pprint(results.payoff_matrix)  
[[3.0, 0.0, 3.0, 3.0],
 [5.0, 1.0, 1.4, 1.4],
 [3.0, 0.9, 3.0, 3.0],
 [3.0, 0.9, 3.0, 3.0]]





We see that the Cooperator gets a mean score of 3 against all players
except the Defector:

>>> results.payoff_matrix[0]
[3.0, 0.0, 3.0, 3.0]







Payoff standard deviation

This gives the standard deviation of the payoff of each player against
every opponent:

>>> pprint.pprint(results.payoff_stddevs)  
[[0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 2.2, 2.2],
 [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0]]





We see that there is no variation for the payoff for Cooperator:

>>> results.payoff_stddevs[0]
[0.0, 0.0, 0.0, 0.0]







Score differences

This gives the score difference for each player against each opponent for every
repetition:

>>> pprint.pprint(results.score_diffs)  
[[[0.0, 0.0, 0.0], [-5.0, -5.0, -5.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
 [[5.0, 5.0, 5.0], [0.0, 0.0, 0.0], [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
 [[0.0, 0.0, 0.0], [-0.5, -0.5, -0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
 [[0.0, 0.0, 0.0], [-0.5, -0.5, -0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]





We see that Cooperator has no difference in score with all players
except against the Defector:

>>> results.score_diffs[0][1]
[-5.0, -5.0, -5.0]







Payoff difference means

This gives the mean payoff differences over each repetition:

>>> pprint.pprint(results.payoff_diffs_means)  
[[0.0, -5.0, 0.0, 0.0],
 [5.0, 0.0, 0.49999999999999983, 0.49999999999999983],
 [0.0, -0.49999999999999983, 0.0, 0.0],
 [0.0, -0.49999999999999983, 0.0, 0.0]]





Here is the mean payoff difference for the Cooperator strategy, shows
that it has no difference with all players except against the
Defector:

>>> results.payoff_diffs_means[0]
[0.0, -5.0, 0.0, 0.0]







Cooperation counts

This gives a total count of cooperation for each player against each opponent:

>>> results.cooperation
[[30, 30, 30, 30], [0, 0, 0, 0], [30, 3, 30, 30], [30, 3, 30, 30]]







Normalised cooperation

This gives the average rate of cooperation against each opponent:

>>> pprint.pprint(results.normalised_cooperation)  
[[1.0, 1.0, 1.0, 1.0],
 [0.0, 0.0, 0.0, 0.0],
 [1.0, 0.1, 1.0, 1.0],
 [1.0, 0.1, 1.0, 1.0]]





We see that Cooperator for all the rounds (as expected):

>>> results.normalised_cooperation[0]
[1.0, 1.0, 1.0, 1.0]







State distribution counts

This gives a total state count against each opponent. A state corresponds to 1
turn of a match and can be one of (C, C), (C, D), (D, C),
(D, D) where the first element is the action of the player in question and
the second the action of the opponent:

>>> pprint.pprint(results.state_distribution)
[[Counter(),
  Counter({(C, D): 30}),
  Counter({(C, C): 30}),
  Counter({(C, C): 30})],
 [Counter({(D, C): 30}),
  Counter(),
  Counter({(D, D): 27, (D, C): 3}),
  Counter({(D, D): 27, (D, C): 3})],
 [Counter({(C, C): 30}),
  Counter({(D, D): 27, (C, D): 3}),
  Counter(),
  Counter({(C, C): 30})],
 [Counter({(C, C): 30}),
  Counter({(D, D): 27, (C, D): 3}),
  Counter({(C, C): 30}),
  Counter()]]







Normalised state distribution

This gives the average rate state distribution against each opponent.
A state corresponds to 1
turn of a match and can be one of (C, C), (C, D), (D, C),
(D, D) where the first element is the action of the player in question and
the second the action of the opponent:

>>> pprint.pprint(results.normalised_state_distribution)
[[Counter(),
  Counter({(C, D): 1.0}),
  Counter({(C, C): 1.0}),
  Counter({(C, C): 1.0})],
 [Counter({(D, C): 1.0}),
  Counter(),
  Counter({(D, D): 0.9..., (D, C): 0.1...}),
  Counter({(D, D): 0.9..., (D, C): 0.1...})],
 [Counter({(C, C): 1.0}),
  Counter({(D, D): 0.9..., (C, D): 0.1...}),
  Counter(),
  Counter({(C, C): 1.0})],
 [Counter({(C, C): 1.0}),
  Counter({(D, D): 0.9..., (C, D): 0.1...}),
  Counter({(C, C): 1.0}),
  Counter()]]







State to action distribution counts

This gives a total state action pair count against each opponent. A state
corresponds to 1 turn of a match and can be one of (C, C), (C,
D), (D, C), (D, D) where the first element is the action of the
player in question and the second the action of the opponent:

>>> pprint.pprint(results.state_to_action_distribution)  
[[Counter(),
  Counter({((C, D), C): 27}),
  Counter({((C, C), C): 27}),
  Counter({((C, C), C): 27})],
 [Counter({((D, C), D): 27}),
  Counter(),
  Counter({((D, D), D): 24, ((D, C), D): 3}),
  Counter({((D, D), D): 24, ((D, C), D): 3})],
 [Counter({((C, C), C): 27}),
  Counter({((D, D), D): 24, ((C, D), D): 3}),
  Counter(),
  Counter({((C, C), C): 27})],
 [Counter({((C, C), C): 27}),
  Counter({((D, D), D): 24, ((C, D), D): 3}),
  Counter({((C, C), C): 27}),
  Counter()]]







Normalised state to action distribution

This gives the average rate state to action pair distribution against each
opponent.  A state corresponds to 1 turn of a match and can be one of
(C, C), (C, D), (D, C), (D, D) where the first element
is the action of the player in question and the second the action of the
opponent:

>>> pprint.pprint(results.normalised_state_to_action_distribution) 
[[Counter(),
  Counter({((C, D), C): 1.0}),
  Counter({((C, C), C): 1.0}),
  Counter({((C, C), C): 1.0})],
 [Counter({((D, C), D): 1.0}),
  Counter(),
  Counter({((D, C), D): 1.0, ((D, D), D): 1.0}),
  Counter({((D, C), D): 1.0, ((D, D), D): 1.0})],
 [Counter({((C, C), C): 1.0}),
  Counter({((C, D), D): 1.0, ((D, D), D): 1.0}),
  Counter(),
  Counter({((C, C), C): 1.0})],
 [Counter({((C, C), C): 1.0}),
  Counter({((C, D), D): 1.0, ((D, D), D): 1.0}),
  Counter({((C, C), C): 1.0}),
  Counter()]]







Initial cooperation counts

This gives the count of cooperations made by each player during the first turn
of every match:

>>> results.initial_cooperation_count
[9, 0, 9, 9]





Each player plays an opponent a total of 9 times (3 opponents and 3
repetitions). Apart from the Defector, they all cooperate on the first
turn.



Initial cooperation rates

This gives the rate of which a strategy cooperates during the first turn:

>>> results.initial_cooperation_rate
[1.0, 0.0, 1.0, 1.0]







Morality Metrics

The following morality metrics are available, they are calculated as a function
of the cooperation rating:

>>> results.cooperating_rating  
[1.0, 0.0, 0.7, 0.7]
>>> pprint.pprint(results.vengeful_cooperation)  
[[1.0, 1.0, 1.0, 1.0],
 [-1.0, -1.0, -1.0, -1.0],
 [1.0, -0.8, 1.0, 1.0],
 [1.0, -0.78 1.0, 1.0]]
>>> pprint.pprint(results.good_partner_matrix)
[[0, 3, 3, 3], [0, 0, 0, 0], [3, 3, 0, 3], [3, 3, 3, 0]]
>>> pprint.pprint(results.good_partner_rating)
[1.0, 0.0, 1.0, 1.0]
>>> results.eigenmoses_rating
[0.37..., -0.37..., 0.59..., 0.59...]
>>> results.eigenjesus_rating
[0.57..., 0.0, 0.57..., 0.57...]





For more information about these see Morality Metrics.





          

      

      

    

  

    
      
          
            
  
Reading and writing interactions from/to file

When dealing with large tournaments it might be desirable to separate the
analysis from the actual running of the tournaments. This can be done by passing
a filename argument to the play method of a tournament:

>>> import axelrod as axl
>>> players = [s() for s in axl.basic_strategies]
>>> tournament = axl.Tournament(players, turns=4, repetitions=2)
>>> results = tournament.play(filename="basic_tournament.csv")





This will create a file basic_tournament.csv with data that looks something
like:

Interaction index,Player index,Opponent index,Repetition,Player name,Opponent name,Actions,Score,Score difference,Turns,Score per turn,Score difference per turn,Win,Initial cooperation,Cooperation count,CC count,CD count,DC count,DD count,CC to C count,CC to D count,CD to C count,CD to D count,DC to C count,DC to D count,DD to C count,DD to D count,Good partner
0,0,0,0,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
0,0,0,0,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
1,0,0,1,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
1,0,0,1,Alternator,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
2,0,1,0,Alternator,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
2,1,0,0,Anti Tit For Tat,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
3,0,1,1,Alternator,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
3,1,0,1,Anti Tit For Tat,Alternator,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
4,0,2,0,Alternator,Bully,CDCD,5,-5,4,1.25,-1.25,0,True,2,1,1,0,2,0,1,0,1,0,0,1,0,1
4,2,0,0,Bully,Alternator,DDCD,10,5,4,2.5,1.25,1,False,1,1,0,1,2,0,1,0,0,0,1,1,0,0
5,0,2,1,Alternator,Bully,CDCD,5,-5,4,1.25,-1.25,0,True,2,1,1,0,2,0,1,0,1,0,0,1,0,1
5,2,0,1,Bully,Alternator,DDCD,10,5,4,2.5,1.25,1,False,1,1,0,1,2,0,1,0,0,0,1,1,0,0
6,0,3,0,Alternator,Cooperator,CDCD,16,10,4,4.0,2.5,1,True,2,2,0,2,0,0,2,0,0,1,0,0,0,0
6,3,0,0,Cooperator,Alternator,CCCC,6,-10,4,1.5,-2.5,0,True,4,2,2,0,0,2,0,1,0,0,0,0,0,1
7,0,3,1,Alternator,Cooperator,CDCD,16,10,4,4.0,2.5,1,True,2,2,0,2,0,0,2,0,0,1,0,0,0,0
7,3,0,1,Cooperator,Alternator,CCCC,6,-10,4,1.5,-2.5,0,True,4,2,2,0,0,2,0,1,0,0,0,0,0,1
8,0,4,0,Alternator,Cycler DC,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
8,4,0,0,Cycler DC,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
9,0,4,1,Alternator,Cycler DC,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
9,4,0,1,Cycler DC,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
10,0,5,0,Alternator,Defector,CDCD,2,-10,4,0.5,-2.5,0,True,2,0,2,0,2,0,0,0,2,0,0,1,0,1
10,5,0,0,Defector,Alternator,DDDD,12,10,4,3.0,2.5,1,False,0,0,0,2,2,0,0,0,0,0,2,0,1,0
11,0,5,1,Alternator,Defector,CDCD,2,-10,4,0.5,-2.5,0,True,2,0,2,0,2,0,0,0,2,0,0,1,0,1
11,5,0,1,Defector,Alternator,DDDD,12,10,4,3.0,2.5,1,False,0,0,0,2,2,0,0,0,0,0,2,0,1,0
12,0,6,0,Alternator,Grudger,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
12,6,0,0,Grudger,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
13,0,6,1,Alternator,Grudger,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
13,6,0,1,Grudger,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
14,0,7,0,Alternator,Suspicious Tit For Tat,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
14,7,0,0,Suspicious Tit For Tat,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
15,0,7,1,Alternator,Suspicious Tit For Tat,CDCD,10,0,4,2.5,0.0,0,True,2,0,2,2,0,0,0,0,2,1,0,0,0,1
15,7,0,1,Suspicious Tit For Tat,Alternator,DCDC,10,0,4,2.5,0.0,0,False,2,0,2,2,0,0,0,0,1,2,0,0,0,1
16,0,8,0,Alternator,Tit For Tat,CDCD,13,5,4,3.25,1.25,1,True,2,1,1,2,0,0,1,0,1,1,0,0,0,0
16,8,0,0,Tit For Tat,Alternator,CCDC,8,-5,4,2.0,-1.25,0,True,3,1,2,1,0,1,0,0,1,1,0,0,0,1
17,0,8,1,Alternator,Tit For Tat,CDCD,13,5,4,3.25,1.25,1,True,2,1,1,2,0,0,1,0,1,1,0,0,0,0
17,8,0,1,Tit For Tat,Alternator,CCDC,8,-5,4,2.0,-1.25,0,True,3,1,2,1,0,1,0,0,1,1,0,0,0,1
18,0,9,0,Alternator,Win-Shift Lose-Stay: D,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
18,9,0,0,Win-Shift Lose-Stay: D,Alternator,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,0,1,1,0,1,0,0,0,1
19,0,9,1,Alternator,Win-Shift Lose-Stay: D,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
19,9,0,1,Win-Shift Lose-Stay: D,Alternator,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,0,1,1,0,1,0,0,0,1
20,0,10,0,Alternator,Win-Stay Lose-Shift: C,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
20,10,0,0,Win-Stay Lose-Shift: C,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
21,0,10,1,Alternator,Win-Stay Lose-Shift: C,CDCD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,1,1,0,0,0,1
21,10,0,1,Win-Stay Lose-Shift: C,Alternator,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,1,0,0,1
22,1,1,0,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
22,1,1,0,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
23,1,1,1,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
23,1,1,1,Anti Tit For Tat,Anti Tit For Tat,CDCD,8,0,4,2.0,0.0,0,True,2,2,0,0,2,0,2,0,0,0,0,1,0,1
24,1,2,0,Anti Tit For Tat,Bully,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,0,1
24,2,1,0,Bully,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,0,0
25,1,2,1,Anti Tit For Tat,Bully,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,0,1
25,2,1,1,Bully,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,0,0
26,1,3,0,Anti Tit For Tat,Cooperator,CDDD,18,15,4,4.5,3.75,1,True,1,1,0,3,0,0,1,0,0,0,2,0,0,0
26,3,1,0,Cooperator,Anti Tit For Tat,CCCC,3,-15,4,0.75,-3.75,0,True,4,1,3,0,0,1,0,2,0,0,0,0,0,1
27,1,3,1,Anti Tit For Tat,Cooperator,CDDD,18,15,4,4.5,3.75,1,True,1,1,0,3,0,0,1,0,0,0,2,0,0,0
27,3,1,1,Cooperator,Anti Tit For Tat,CCCC,3,-15,4,0.75,-3.75,0,True,4,1,3,0,0,1,0,2,0,0,0,0,0,1
28,1,4,0,Anti Tit For Tat,Cycler DC,CCDC,7,-5,4,1.75,-1.25,0,True,3,2,1,0,1,0,1,1,0,0,0,1,0,1
28,4,1,0,Cycler DC,Anti Tit For Tat,DCDC,12,5,4,3.0,1.25,1,False,2,2,0,1,1,0,1,0,0,1,0,1,0,0
29,1,4,1,Anti Tit For Tat,Cycler DC,CCDC,7,-5,4,1.75,-1.25,0,True,3,2,1,0,1,0,1,1,0,0,0,1,0,1
29,4,1,1,Cycler DC,Anti Tit For Tat,DCDC,12,5,4,3.0,1.25,1,False,2,2,0,1,1,0,1,0,0,1,0,1,0,0
30,1,5,0,Anti Tit For Tat,Defector,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,0,1
30,5,1,0,Defector,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,0,0
31,1,5,1,Anti Tit For Tat,Defector,CCCC,0,-20,4,0.0,-5.0,0,True,4,0,4,0,0,0,0,3,0,0,0,0,0,1
31,5,1,1,Defector,Anti Tit For Tat,DDDD,20,20,4,5.0,5.0,1,False,0,0,0,4,0,0,0,0,0,0,3,0,0,0
32,1,6,0,Anti Tit For Tat,Grudger,CDDC,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,0,0,1,1,0,1
32,6,1,0,Grudger,Anti Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,0,0,1,1
33,1,6,1,Anti Tit For Tat,Grudger,CDDC,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,0,0,0,1,1,0,1
33,6,1,1,Grudger,Anti Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,1,0,0,1,0,0,0,1,1
34,1,7,0,Anti Tit For Tat,Suspicious Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,1,0,0,1,0,0,1
34,7,1,0,Suspicious Tit For Tat,Anti Tit For Tat,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,1,0,0,1,1,0,0,0,1
35,1,7,1,Anti Tit For Tat,Suspicious Tit For Tat,CCDD,9,0,4,2.25,0.0,0,True,2,1,1,1,1,0,1,1,0,0,1,0,0,1
35,7,1,1,Suspicious Tit For Tat,Anti Tit For Tat,DCCD,9,0,4,2.25,0.0,0,False,2,1,1,1,1,1,0,0,1,1,0,0,0,1
...





Note that depending on the order in which the matches have been played, the rows
could also be in a different order.

It is possible to read in this data file to obtain interactions:

>>> interactions = axl.interaction_utils.read_interactions_from_file("basic_tournament.csv")





This gives a dictionary mapping pairs of player indices to interaction
histories:

>>> interactions[(0, 1)]
[[(C, C), (D, D), (C, C), (D, D)], [(C, C), (D, D), (C, C), (D, D)]]





This should allow for easy manipulation of data outside of the capabilities
within the library.

Note that you can supply build_results=False as a keyword
argument to tournament.play() to prevent keeping or loading interactions in
memory, since the total memory footprint can be large for various combinations
of parameters. The memory usage scales as \(O(\text{players}^2 \times \text{turns} \times \text{repetitions})\).




          

      

      

    

  

    
      
          
            
  
Parallel processing

When dealing with large tournaments on a multi core machine it is possible to
run the tournament in parallel although this is not currently supported on
Windows. Using processes=0 will simply use all available cores:

>>> import axelrod as axl
>>> players = [s() for s in axl.basic_strategies]
>>> tournament = axl.Tournament(players, turns=4, repetitions=2)
>>> results = tournament.play(processes=0)








          

      

      

    

  

    
      
          
            
  
Using the cache

Whilst for stochastic strategies, every repetition of a Match will give a
different result, for deterministic strategies, when there is no noise there is
no need to re run the match. The library has a DeterministicCache class
that allows us to quickly replay matches.


Caching a Match

To illustrate this, let us time the play of a match without a cache:

>>> import axelrod as axl
>>> import timeit
>>> def run_match():
...     p1, p2 = axl.GoByMajority(), axl.Alternator()
...     match = axl.Match((p1, p2), turns=200)
...     return match.play()
>>> time_with_no_cache = timeit.timeit(run_match, number=500)
>>> time_with_no_cache  
2.2295279502868652





Here is how to create a new empty cache:

>>> cache = axl.DeterministicCache()
>>> len(cache)
0





Let us rerun the above match but using the cache:

>>> p1, p2 = axl.GoByMajority(), axl.Alternator()
>>> match = axl.Match((p1, p2), turns=200, deterministic_cache=cache)
>>> match.play()  
[(C, C), ..., (C, D)]





We can take a look at the cache:

>>> cache  
{('Soft Go By Majority', 'Alternator'): [(C, C), ..., (C, D)]}
>>> len(cache)
1
>>> len(cache[(axl.GoByMajority(), axl.Alternator())])
200





This maps a triplet of 2 player names and the match length to the resulting
interactions.  We can rerun the code and compare the timing:

>>> def run_match_with_cache():
...     p1, p2 = axl.GoByMajority(), axl.Alternator()
...     match = axl.Match((p1, p2), turns=200, deterministic_cache=cache)
...     return match.play()
>>> time_with_cache = timeit.timeit(run_match_with_cache, number=500)
>>> time_with_cache  
0.04215192794799805
>>> time_with_cache < time_with_no_cache
True





We can write the cache to file:

>>> cache.save("cache.txt")
True







Caching a Tournament

Tournaments will automatically create caches as needed on a match by match
basis.



Caching a Moran Process

A prebuilt cache can also be used in a Moran process (by default a new cache is
used):

>>> cache = axl.DeterministicCache("cache.txt")
>>> players = [axl.GoByMajority(), axl.Alternator(),
...            axl.Cooperator(), axl.Grudger()]
>>> mp = axl.MoranProcess(players, deterministic_cache=cache)
>>> populations = mp.play()
>>> mp.winning_strategy_name   
Defector





We see that the cache has been augmented, although note that this
particular number will depend on the stochastic behaviour of the Moran process:

>>> len(cache)  
18









          

      

      

    

  

    
      
          
            
  
Setting a random seed

The library has a variety of strategies whose behaviour is stochastic. To ensure
reproducible results a random seed should be set. The library abstracts away the
propagation of seeds in matches and tournaments, so you typically only need to
supply a seed to those objects.


Matches

For a match, set a seed by passing a parameter to Match

>>> import axelrod as axl
>>> players = (axl.Random(), axl.MetaMixer())  # Two stochastic strategies
>>> match = axl.Match(players, turns=3, seed=101)
>>> results = match.play()





We obtain the same results if it is played with the same seed:

>>> match2 = axl.Match(players, turns=3, seed=101)
>>> result2 = match2.play()
>>> results == result2
True





For noisy matches, a seed also needs to be set for reproducibility, even if the players are
deterministic.

>>> import axelrod as axl
>>> players = (axl.Cooperator(), axl.Defector())  # Two deterministic strategies
>>> match = axl.Match(players, turns=200, seed=101, noise=0.25)
>>> results = match.play()
>>> match2 = axl.Match(players, turns=200, seed=101, noise=0.25)
>>> results2 = match2.play()
>>> results == results2
True







Tournaments

For tournaments, an initial seed is used to generate subsequent seeds for each match in a
a manner that will yield identical results. Note that if the tournament is run with multiple
processes, the order of the matches may be computed differently, but the seeds used for each
match will be the same.

To seed a tournament we also pass a seed to the tournament at creation time:

>>> import axelrod as axl
>>> seed = 201
>>> players = (axl.Random(), axl.Cooperator(), axl.MetaMixer())
>>> tournament = axl.Tournament(players, turns=5, repetitions=5, seed=seed)
>>> results = tournament.play(processes=1)
>>> tournament2 = axl.Tournament(players, turns=5, repetitions=5, seed=seed)
>>> results2 = tournament.play(processes=1)
>>> results.ranked_names == results2.ranked_names
True





For parallel processing, the ordering of match results may differ, but the actual results, and the final
rankings, will be the same.

>>> import axelrod as axl
>>> players = (axl.Random(), axl.Cooperator(), axl.MetaMixer())
>>> tournament = axl.Tournament(players, turns=5, repetitions=5, seed=201)
>>> results = tournament.play(processes=2)
>>> tournament2 = axl.Tournament(players, turns=5, repetitions=5, seed=201)
>>> results2 = tournament.play(processes=2)
>>> results.ranked_names == results2.ranked_names
True







Moran Process

Similarly, a Moran process is essentially another type of tournament. The library’s implementation
will propagate child seeds to each match to ensure reproducibility. See also the documentation on
EvolvablePlayers.



Fingerprints

Since fingerprint generation depends on tournaments, fingerprints can also be given a seed for
reproducibility.





          

      

      

    

  

    
      
          
            
  
Player information

It is possible to determine what information players know about their matches.
By default all known information is given.  For example let us create a match
with 5 turns between FirstBySteinAndRapoport and Alternator. The
latter of these two always defects on the last 2 turns:

>>> import axelrod as axl
>>> players = (axl.Alternator(), axl.FirstBySteinAndRapoport())
>>> axl.Match(players, turns=5).play()
[(C, C), (D, C), (C, C), (D, D), (C, D)]





We can play the same match but let us tell the players that the match lasts 6
turns:

>>> axl.Match(players, turns=5, match_attributes={"length": 6}).play()
[(C, C), (D, C), (C, C), (D, C), (C, D)]





We can also pass this information to a tournament. Let us create a
tournament with 5 turns but ensure the players believe the match length is
infinite (unknown):

>>> tournament = axl.Tournament(players, turns=5,
...                             match_attributes={"length": float('inf')})





The match_attributes dictionary can also be used to pass game
and noise.




          

      

      

    

  

    
      
          
            
  
Player equality

It is possible to test for player equality using ==:

>>> import axelrod as axl
>>> p1, p2, p3 = axl.Alternator(), axl.Alternator(), axl.TitForTat()
>>> p1 == p2
True
>>> p1 == p3
False





Note that this checks all the attributes of an instance:

>>> p1.name = "John Nash"
>>> p1 == p2
False





This however does not check if the players will behave in the same way. For
example here are two equivalent players:

>>> p1 = axl.Alternator()
>>> p2 = axl.Cycler("CD")
>>> p1 == p2
False





To check if player strategies are equivalent you can use Fingerprinting.




          

      

      

    

  

    
      
          
            
  
Using and playing different stage games

As described in Play Contexts and Generic Prisoner’s Dilemma the default game used for the Prisoner’s
Dilemma is given by:

>>> import axelrod as axl
>>> pd = axl.game.Game()
>>> pd
Axelrod game: (R,P,S,T) = (3, 1, 0, 5)
>>> pd.RPST()
(3, 1, 0, 5)





These Game objects are used to score matches,
tournaments and Moran processes:

>>> pd.score((axl.Action.C, axl.Action.C))
(3, 3)
>>> pd.score((axl.Action.C, axl.Action.D))
(0, 5)
>>> pd.score((axl.Action.D, axl.Action.C))
(5, 0)
>>> pd.score((axl.Action.D, axl.Action.D))
(1, 1)





It is possible to run a matches, tournaments and Moran processes with a
different game. For example here is the game of chicken:

>>> chicken = axl.game.Game(r=0, s=-1, t=1, p=-10)
>>> chicken
Axelrod game: (R,P,S,T) = (0, -10, -1, 1)
>>> chicken.RPST()
(0, -10, -1, 1)





Here is a simple tournament run with this game:

>>> players = [axl.Cooperator(), axl.Defector(), axl.TitForTat()]
>>> tournament = axl.Tournament(players, game=chicken)
>>> results = tournament.play()
>>> results.ranked_names
['Cooperator', 'Defector', 'Tit For Tat']





The default Prisoner’s dilemma has different results:

>>> tournament = axl.Tournament(players)
>>> results = tournament.play()
>>> results.ranked_names
['Defector', 'Tit For Tat', 'Cooperator']








          

      

      

    

  

    
      
          
            
  
Contributing

This section contains a variety of tutorials that should help you contribute to
the library.

Contents:



	Guidelines

	Contributing a strategy
	Instructions

	Writing the new strategy

	Writing docstrings

	Adding the new strategy

	Classifying the new strategy

	Writing tests for the new strategy





	Contributing to the library

	Running tests
	Basic test runners

	Testing coverage of tests

	Testing the documentation

	Type checking





	Continuous integration








          

      

      

    

  

    
      
          
            
  
Guidelines

All contributions to this repository are welcome via pull request on the github repository [https://github.com/Axelrod-Python/Axelrod].

The project follows the following guidelines:


	Use the base Python library unless completely necessary. A few external
libraries (such as numpy) have been included in requirements.txt – feel free
to use these as needed.


	Try as best as possible to follow PEP8 [https://www.python.org/dev/peps/pep-0008/] which includes using
descriptive variable names.


	
	Code Format: Use the Black formatter [https://github.com/ambv/black] to format

	all code  and the isort utility [https://github.com/timothycrosley/isort] to
sort import statements.







	Commits: Please try to use commit messages that give a meaningful history
for anyone using git’s log features. Try to use messages that complete sentence,
“This commit will…” There is some excellent guidance on the subject
from Chris Beams [https://chris.beams.io/posts/git-commit/]


	Testing: the project uses the unittest [https://docs.python.org/2/library/unittest.html] library and has a nice
testing suite that makes some things very easy to write tests for. Please try
to increase the test coverage on pull requests.


	Merging pull-requests: We require two of the (currently three) core-team
maintainers to merge. Opening a PR for early
feedback or to check test coverage is OK, just indicate that the PR is not ready
to merge (and update when it is).




By submitting a pull request, you are agreeing that your work may be distributed
under the terms of the project’s licence [https://raw.githubusercontent.com/Axelrod-Python/Axelrod/master/LICENSE.txt] and you will become one of the project’s joint copyright holders.




          

      

      

    

  

    
      
          
            
  
Contributing a strategy

This section contains a variety of tutorials that should help you contribute a
new strategy to the library.

Contents:



	Instructions

	Writing the new strategy
	Identify a new strategy

	The code





	Writing docstrings
	Sections





	Adding the new strategy

	Classifying the new strategy

	Writing tests for the new strategy








          

      

      

    

  

    
      
          
            
  
Instructions

Here is the file structure for the Axelrod repository:

.
├── axelrod
│   └── __init__.py
│   └── ecosystem.py
│   └── game.py
│   └── player.py
│   └── plot.py
│   └── result_set.py
│   └── round_robin.py
│   └── tournament.py
│   └── /strategies/
│       └── __init__.py
│       └── _strategies.py
│       └── cooperator.py
│       └── defector.py
│       └── grudger.py
│       └── titfortat.py
│       └── gobymajority.py
│       └── ...
│   └── /tests/
│       └── integration
│       └── strategies
│       └── unit
│           └── test_*.py
└── README.md





To contribute a strategy you need to follow as many of the following steps as possible:


	Fork the github repository [https://github.com/Axelrod-Python/Axelrod].


	Add a <strategy>.py file to the strategies directory or add a
strategy to a pre existing <strategy>.py file.


	Update the ./axelrod/strategies/_strategies.py file.


	If you created a new <strategy>.py file add it to
.docs/reference/all_strategies.rst.


	Write some unit tests in the ./axelrod/tests/strategies/ directory.


	This one is also optional: ping us a message and we’ll add you to the
Contributors team. This would add an Axelrod-Python organisation badge to
your profile.


	Send us a pull request.




If you would like a hand with any of the above please do get in touch: we’re
always delighted to have new strategies.




          

      

      

    

  

    
      
          
            
  
Writing the new strategy


Identify a new strategy

If you’re not sure if you have a strategy that has already been implemented, you
can search the Strategies index to see if they are implemented. If you
are still unsure please get in touch: via the gitter room [https://gitter.im/Axelrod-Python/Axelrod] or open an issue [https://github.com/Axelrod-Python/Axelrod/issues].

Several strategies are special cases of other strategies. For example, both
Cooperator and Defector are special cases of Random,
Random(1) and Random(0) respectively. While we could eliminate
Cooperator in its current
form, these strategies are intentionally left as is as simple examples for new
users and contributors. Nevertheless, please feel free to update the docstrings
of strategies like Random to point out such cases.



The code

There are a couple of things that need to be created in a strategy.py file.  Let
us take a look at the TitForTat class (located in the
axelrod/strategies/titfortat.py file):

class TitForTat(Player):
    """
    A player starts by cooperating and then mimics previous move by
    opponent.

    Note that the code for this strategy is written in a fairly verbose
    way. This is done so that it can serve as an example strategy for
    those who might be new to Python.

    Names

    - Rapoport's strategy: [Axelrod1980]_
    - TitForTat: [Axelrod1980]_
    """

    # These are various properties for the strategy
    name = 'Tit For Tat'
    classifier = {
        'memory_depth': 1,  # Four-Vector = (1.,0.,1.,0.)
        'stochastic': False,
        'inspects_source': False,
        'manipulates_source': False,
        'manipulates_state': False
    }

    def strategy(self, opponent):
        """This is the actual strategy"""
        # First move
        if len(self.history) == 0:
            return C
        # React to the opponent's last move
        if opponent.history[-1] == D:
            return D
        return C





The first thing that is needed is a docstring that explains what the strategy
does:

"""A player starts by cooperating and then mimics previous move by opponent."""





Secondly, any alternate names should be included and if possible references
provided (this helps when trying to identify if a strategy has already been
implemented or not):

- Rapoport's strategy: [Axelrod1980]_
- TitForTat: [Axelrod1980]_





These references can be found in the Bibliography. If a required
references is not there please feel free to add it or just get in touch and we’d
be happy to help.

After that simply add in the string that will appear as the name of the
strategy:

name = 'Tit For Tat'





Note that this is mainly used in plots by matplotlib so you can use
LaTeX if you want to.  For example there is strategy with \(\pi\) as a
name:

name = '$\pi$'





Following that you can add in the classifier dictionary:

classifier = {
    'memory_depth': 1,  # Four-Vector = (1.,0.,1.,0.)
    'stochastic': False,
    'inspects_source': False,
    'manipulates_source': False,
    'manipulates_state': False
}





This helps classify the strategy as described in
Classification of strategies.

After that the only thing required is to write the strategy method
which takes an opponent as an argument. In the case of
TitForTat the
strategy checks if it has any history (if len(self.history) == 0). If
it does not (ie this is the first play of the match) then it returns C.
If not, the strategy simply repeats the opponent’s last move (return
opponent.history[-1]):

def strategy(opponent):
    """This is the actual strategy"""
    # First move
    if len(self.history) == 0:
        return C
    # Repeat the opponent's last move
    return opponent.history[-1]





The variables C and D represent the cooperate and defect actions
respectively.

Some strategies make specific use of the variables of a match to create their
own attributes. In principle these attributes could change throughout a match
or tournament if the match properties (like the game matrix) change, so we
require that this logic live in the receive_match_attributes method for
correct dynamic updating. Here is how this is done for Stalker:

def receive_match_attributes(self)
    R, P, S, T = self.match_attributes["game"].RPST()
    self.very_good_score = R
    self.very_bad_score = P
    self.wish_score = (R + P) / 2





There are various examples of helpful functions and properties that make
writing strategies easier. Do not hesitate to get in touch with the
Axelrod-Python team for guidance.





          

      

      

    

  

    
      
          
            
  
Writing docstrings

The project takes pride in its documentation for the strategies
and its corresponding bibliography. The docstring is a string
which describes a method, module or class. The docstrings help
the user in understanding the working of the strategy
and the source of the strategy. The docstring must be written in
the following way, i.e.:

 """This is a docstring.

It can be written over multiple lines.

"""






Sections

The Sections of the docstring are:


	Working of the strategy

A brief summary on how the strategy works, E.g.:

class TitForTat(Player):
"""
A player starts by cooperating and then mimics the
previous action of the opponent.
"""







	Bibliography/Source of the strategy

A section to mention the source of the strategy
or the paper from which the strategy was taken.
The section must start with the Names section.
For E.g.:

class TitForTat(Player):
"""
A player starts by cooperating and then mimics the
previous action of the opponent.

Names:

- Rapoport's strategy: [Axelrod1980]_
- TitForTat: [Axelrod1980]_
"""





Here, the info written under the Names section
tells about the source of the TitforTat strategy.
[Axelrod1980]_ corresponds to the bibliographic item in
docs/reference/bibliography.rst. If you are using a source
that is not in the bibliography please add it.









          

      

      

    

  

    
      
          
            
  
Adding the new strategy

To get the strategy to be recognised by the library we need to add it to the
files that initialise when someone types import axelrod.  This is done
in the axelrod/strategies/_strategies.py file.

To classify the new strategy, run rebuild_classifier_table:

python rebuild_classifier_table.py





This will update axelrod/strategies/_strategies.py.  Check that the
recorded classifications for the strategies are what you expected.

If you have added your strategy to a file that already existed (perhaps you
added a new variant of titfortat to the titfortat.py file),
simply add your strategy to the list of strategies already imported from
<file_name>.py:

from <file_name> import <list-of-strategies>





If you have added your strategy to a new file then simply add a line similar to
above with your new strategy.

Once you have done that, you need to add the class itself to the
all_strategies list (in axelrod/strategies/_strategies.py).
You will also need to increment the doctest in
axelrod/docs/index.rst.

Finally, if you have created a new module (a new <strategy.py> file)
please add it to the docs/references/all_strategies.rst file so that it
will automatically be documented.




          

      

      

    

  

    
      
          
            
  
Classifying the new strategy

Every strategy class has a classifier dictionary that gives some classification
of the strategy according to certain dimensions.  Some of the classifiers have
formulas that try to compute the value for different strategies.  Where these
exist, they’re overridden by the values defined in this dictionary.  When
creating a new strategy, you should try to fill out all of the dictionary.

Let us take a look at the dimensions available by looking at TitForTat:

>>> import axelrod
>>> classifier = axelrod.TitForTat.classifier
>>> for key in sorted(classifier.keys()):
...    print(key)
inspects_source
long_run_time
manipulates_source
manipulates_state
memory_depth
stochastic





You can read more about this in the Classification of strategies section
but here are some tips about filling this part in correctly.

Note that when an instance of a class is created it gets it’s own copy of the
default classifier dictionary from the class. This might sometimes be modified by
the initialisation depending on input parameters. A good example of this is the
Joss strategy:

>>> joss = axelrod.FirstByJoss()
>>> boring_joss = axelrod.FirstByJoss(p=1)
>>> axelrod.Classifiers["stochastic"](joss)
True
>>> axelrod.Classifiers["stochastic"](boring_joss)
False





A classifier value defined on the instance overrides the value defined for the
class.

There are currently three important dimensions that help identify if a strategy
obeys axelrod’s original tournament rules.


	inspects_source - does the strategy ‘read’ any source code that
it would not normally have access to. An example of this is Geller.


	manipulates_source - does the strategy ‘write’ any source code that
it would not normally be able to. An example of this is Mind Bender.


	manipulates_state - does the strategy ‘change’ any attributes that
it would not normally be able to. An example of this is Mind Reader.




These dimensions are currently relevant to the obey_axelrod function which
checks if a strategy obeys Axelrod’s original rules.




          

      

      

    

  

    
      
          
            
  
Writing tests for the new strategy

To write tests you either need to create a file called test_<library>.py
where <library>.py is the name of the file you have created or similarly
add tests to the test file that is already present in the
axelrod/tests/strategies/ directory.

Typically we want to test the following:


	That the strategy behaves as intended on the first move and subsequent
moves, triggering any expected actions


	That the strategy initializes correctly




A TestPlayer class has been written that has
a member function versus_test which can be used to test how the player
plays against a given opponent.
It takes an optional keyword
argument seed (useful and necessary for stochastic strategies,
None by default):

self.versus_test(opponent=axelrod.MockPlayer(actions=[C, D]),
                 expected_actions=[(D, C), (C, D), (C, C)], seed=None)





In this case the player is tested against an opponent that will cycle through
C, D. The expected_actions are the actions played by both
the tested player and the opponent in the match. In this case we see that the
player is expected to play D, C, C against C, D, C.

Note that you can either user a MockPlayer that will cycle through a
given sequence or you can use another strategy from the Axelrod library.

The function versus_test also accepts a dictionary parameter of
attributes to check at the end of the match. For example this test checks
if the player’s internal variable opponent_class is set to
"Cooperative":

actions = [(C, C)] * 6
self.versus_test(axelrod.Cooperator(), expected_actions=actions
                 attrs={"opponent_class": "Cooperative"})





Note here that instead of passing a sequence of actions as an opponent we are
passing an actual player from the axelrod library.

The function versus_test also accepts a dictionary parameter of match
attributes that dictate the knowledge of the players. For example this test
assumes that players do not know the length of the match:

actions = [(C, C), (C, D), (D, C), (C, D)]
self.versus_test(axelrod.Alternator(), expected_actions=actions,
                 match_attributes={"length": float("inf")})





The function versus_test also accepts a dictionary parameter of
keyword arguments that dictate how the player is initiated. For example this
tests how the player plays when initialised with p=1:

actions = [(C, C), (C, D), (C, C), (C, D)]
self.versus_test(axelrod.Alternator(), expected_actions=actions,
                 init_kwargs={"p": 1})





As an example, the tests for Tit-For-Tat are as follows:

import axelrod
from test_player import TestPlayer

C, D = axelrod.Action.C, axelrod.Action.D

class TestTitForTat(TestPlayer):
    """
    Note that this test is referred to in the documentation as an example on
    writing tests.  If you modify the tests here please also modify the
    documentation.
    """

    name = "Tit For Tat"
    player = axelrod.TitForTat
    expected_classifier = {
        'memory_depth': 1,
        'stochastic': False,
        'makes_use_of': set(),
        'inspects_source': False,
        'manipulates_source': False,
        'manipulates_state': False
    }

    def test_strategy(self):
        self.first_play_test(C)
        self.second_play_test(rCC=C, rCD=D, rDC=C, rDD=D)

        # Play against opponents
        actions = [(C, C), (C, D), (D, C), (C, D)]
        self.versus_test(axelrod.Alternator(), expected_actions=actions)

        actions = [(C, C), (C, C), (C, C), (C, C)]
        self.versus_test(axelrod.Cooperator(), expected_actions=actions)

        actions = [(C, D), (D, D), (D, D), (D, D)]
        self.versus_test(axelrod.Defector(), expected_actions=actions)

        # This behaviour is independent of knowledge of the Match length
        actions = [(C, C), (C, D), (D, C), (C, D)]
        self.versus_test(axelrod.Alternator(), expected_actions=actions,
                         match_attributes={"length": float("inf")})

        # We can also test against random strategies
        actions = [(C, D), (D, D), (D, C), (C, C)]
        self.versus_test(axelrod.Random(), expected_actions=actions,
                         seed=0)

        actions = [(C, C), (C, D), (D, D), (D, C)]
        self.versus_test(axelrod.Random(), expected_actions=actions,
                         seed=1)

        #  If you would like to test against a sequence of moves you should use
        #  a MockPlayer
        opponent = axelrod.MockPlayer(actions=[C, D])
        actions = [(C, C), (C, D), (D, C), (C, D)]
        self.versus_test(opponent, expected_actions=actions)

        opponent = axelrod.MockPlayer(actions=[C, C, D, D, C, D])
        actions = [(C, C), (C, C), (C, D), (D, D), (D, C), (C, D)]
        self.versus_test(opponent, expected_actions=actions)





There are other examples of using this testing framework in
axelrod/tests/strategies/test_titfortat.py.

The expected_classifier dictionary tests that the classification of the
strategy is as expected (the tests for this is inherited in the init
method). Please be sure to classify new strategies according to the already
present dimensions but if you create a new dimension you do not need to re
classify all the other strategies (but feel free to! :)), but please do add it
to the default_classifier in the axelrod/player.py parent class.




          

      

      

    

  

    
      
          
            
  
Contributing to the library

All contributions (docs, tests, etc) are very welcome, if there is a specific
functionality that you would like to add then please open an issue (or indeed
take a look at the ones already there and jump in the conversation!).

If you want to work on documentation please keep in mind that doctests are
encouraged to help keep the documentation up to date.




          

      

      

    

  

    
      
          
            
  
Running tests


Basic test runners

Before running tests, you should have hypothesis 3.2 installed:

$ pip install hypothesis==3.2





The project has an extensive test suite which is run each time a new
contribution is made to the repository.  If you want to check that all the tests
pass before you submit a pull request you can run the tests yourself:

$ python -m unittest discover





If you are developing new tests for the suite, it is useful to run a single test
file so that you don’t have to wait for the entire suite each time.  For
example, to run only the tests for the Grudger strategy:

$ python -m unittest axelrod.tests.strategies.test_grudger





The test suite is divided into three categories: strategy tests, unit tests and integration tests.
Each can be run individually:

$ python -m unittest discover -s axelrod.tests.strategies
$ python -m unittest discover -s axelrod.tests.unit
$ python -m unittest discover -s axelrod.tests.integration







Testing coverage of tests

The library has 100% test coverage. This can be tested using the Python
coverage package. Once installed (pip install coverage), to run
the tests and check the coverage for the entire library:

$ coverage run --source=axelrod -m unittest discover





You can then view a report of the coverage:

$ coverage report -m





You can also run the coverage on a subset of the tests. For example, to run the
tests with coverage for the Grudger strategy:

$ coverage run --source=axelrod -m unittest axelrod.tests.strategies.test_grudger







Testing the documentation

The documentation is doctested, to run those tests you can run
the script:

$ python doctests.py





You can also run the doctests on any given file. For example, to run the
doctests for the docs/tutorials/getting_started/match.rst file:

$ python -m doctest docs/tutorials/getting_started/match.rst







Type checking

The library makes use of type hinting, this can be checked using the Python
mypy package. Once installed (pip install mypy), to run the type checker:

$ python run_mypy.py





You can also run the type checker on a given file. For example, to run the type
checker on the Grudger strategy:

$ mypy --ignore-missing-imports --follow-imports skip axelrod/strategies/grudger.py








Continuous integration

This project is being taken care of by travis-ci [https://travis-ci.org/], so all tests will be run automatically when opening
a pull request.  You can see the latest build status here [https://travis-ci.org/Axelrod-Python/Axelrod].




          

      

      

    

  

    
      
          
            
  
Reference

This section is the reference guide for the various components of the library.

Contents:



	Background to Axelrod’s Tournament
	The Prisoner’s Dilemma

	The Iterated Prisoner’s Dilemma





	Play Contexts and Generic Prisoner’s Dilemma

	Tournaments
	Axelrod’s first tournament

	Axelrod’s second tournament

	Stewart and Plotkin’s Tournament (2012)

	Beaufils et al.’s tournament (1997)





	Strategies index

	Bibliography

	Glossary
	An action

	A play

	A turn

	A match

	A win

	A strategy

	A player

	A round robin

	A tournament

	Noise












          

      

      

    

  

    
      
          
            
  
Background to Axelrod’s Tournament

In the 1980s, professor of Political Science Robert Axelrod ran a tournament inviting strategies from collaborators all over the world for the Iterated Prisoner’s Dilemma [http://en.wikipedia.org/wiki/The_Evolution_of_Cooperation#Axelrod.27s_tournaments].

Another nice write up of Axelrod’s work and this tournament on github was put together by Artem Kaznatcheev [https://plus.google.com/101780559173703781847/posts] here [https://egtheory.wordpress.com/2015/03/02/ipd/].


The Prisoner’s Dilemma

The Prisoner’s dilemma [http://en.wikipedia.org/wiki/Prisoner%27s_dilemma] is the simple two player game shown below:








	
	Cooperate

	Defect





	Cooperate

	(3,3)

	(0,5)



	Defect

	(5,0)

	(1,1)






If both players cooperate they will each go to prison for 2 years and receive an
equivalent utility of 3.
If one cooperates and the other defects: the defector does not go to prison and the cooperator goes to prison for 5 years, the cooperator receives a utility of 0 and the defector a utility of 5.
If both defect: they both go to prison for 4 years and receive an equivalent
utility of 1.


Note

Years in prison doesn’t equal to utility directly. The formula is U = 5 - Y for Y in [0, 5], where U is the utility, Y are years in prison. The reason is to follow the original Axelrod’s scoring.



By simply investigating the best responses against both possible actions of each player it is immediate to see that the Nash equilibrium for this game is for both players to defect.



The Iterated Prisoner’s Dilemma

We can use the basic Prisoner’s Dilemma as a stage game in a repeated game.
Players now aim to maximise the utility (corresponding to years in prison) over a repetition of the game.
Strategies can take in to account both players history and so can take the form:


“I will cooperate unless you defect 3 times in a row at which point I will defect forever.”




Axelrod ran such a tournament (twice) and invited strategies from anyone who would contribute.
The tournament was a round robin and the winner was the strategy who had the lowest total amount of time in prison.

This tournament has been used to study how cooperation can evolve from a very simple set of rules.
This is mainly because the winner of both tournaments was ‘tit for tat’: a strategy that would never defect first (referred to as a ‘nice’ strategy).





          

      

      

    

  

    
      
          
            
  
Play Contexts and Generic Prisoner’s Dilemma

There are four possible round outcomes:


	Mutual cooperation: \((C, C)\)


	Defection: \((C, D)\) or \((D, C)\)


	Mutual defection: \((D, D)\)




Each of these corresponds to one particular set of payoffs in the following
generic Prisoner’s dilemma:








	
	Cooperate

	Defect





	Cooperate

	(R,R)

	(S,T)



	Defect

	(T,S)

	(P,P)






For the above to constitute a Prisoner’s dilemma, the following must hold:
\(T>R>P>S\).

These payoffs are commonly referred to as:


	\(R\): the Reward payoff (default value in the library: 3)


	\(P\): the Punishment payoff (default value in the library: 1)


	\(S\): the Sucker payoff (default value in the library: 0)


	\(T\): the Temptation payoff (default value in the library: 5)




A particular Prisoner’s Dilemma is often described by the 4-tuple: \((R, P,
S, T)\):

>>> import axelrod
>>> axelrod.game.DefaultGame.RPST()
(3, 1, 0, 5)








          

      

      

    

  

    
      
          
            
  
Tournaments


Axelrod’s first tournament

Axelrod’s first tournament is described in his 1980 paper entitled ‘Effective
choice in the Prisoner’s Dilemma’ [http://www.jstor.org/stable/173932] [Axelrod1980]. This
tournament included 14 strategies (plus a random “strategy”) and they are listed
below, (ranked in the order in which they appeared).

An indication is given as to whether or not this strategy is implemented in the
axelrod library. If this strategy is not implemented please do send us a
pull request [https://github.com/Axelrod-Python/Axelrod/pulls].


Strategies in Axelrod’s first tournament






	Name

	Author

	Axelrod Library Name





	Tit For Tat

	Anatol Rapoport

	TitForTat



	Tideman and Chieruzzi

	T Nicolaus Tideman and Paula Chieruzz

	TidemanAndChieruzzi



	Nydegger

	Rudy Nydegger

	Nydegger



	Grofman

	Bernard Grofman

	Grofman



	Shubik

	Martin Shubik

	Shubik



	Stein and Rapoport

	Stein and Anatol Rapoport

	SteinAndRapoport



	Grudger

	James W Friedman

	Grudger



	Davis

	Morton Davis

	Davis



	Graaskamp

	Jim Graaskamp

	Graaskamp



	FirstByDowning

	Leslie Downing

	RevisedDowning



	Feld

	Scott Feld

	Feld



	Joss

	Johann Joss

	Joss



	Tullock

	Gordon Tullock

	Tullock



	(Name withheld)

	Unknown

	UnnamedStrategy



	Random

	Unknownd

	Random








Axelrod’s second tournament

The code for Axelrod’s second touranment was originally published by the
University of Michigan Center for the Study of Complex Systems [http://lsa.umich.edu/cscs/]
and is now available from
Robert Axelrod’s personal website [http://www-personal.umich.edu/~axe/research/Software/CC/CC2.html]
subject to a disclaimer [http://www-personal.umich.edu/~axe/research/Software/CC/CCDisclaimer.html]
which states:


“All materials in this archive are copyright (c) 1996, Robert Axelrod, unless
otherwise noted. You are free to download these materials and use them without
restriction.”




The Axelrod-Python organisation has published a
modified version of the original code [https://github.com/Axelrod-Python/TourExec].
In the following table, links to original code point to the Axelrod-Python
repository.


Strategies in Axelrod’s second tournament






	Original Code

	Author

	Axelrod Library Name





	GRASR [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/grasr.f]

	Unknown

	Not Implemented



	K31R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k31r.f]

	Gail Grisell

	GoByMajority



	K32R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k32r.f]

	Charles Kluepfel

	SecondByKluepfel



	K33R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k33r.f]

	Harold Rabbie

	Not Implemented



	K34R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k34r.f]

	James W Friedman

	Grudger



	K35R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k35r.f]

	Abraham Getzler

	Not Implemented



	K36R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k36r.f]

	Roger Hotz

	Not Implemented



	K37R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k37r.f]

	George Lefevre

	Not Implemented



	K38R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k38r.f]

	Nelson Weiderman

	Not Implemented



	K39R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k39r.f]

	Tom Almy

	Not Implemented



	K40R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k40r.f]

	Robert Adams

	Not Implemented



	K41R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k41r.f]

	Herb Weiner

	SecondByWeiner



	K42R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k42r.f]

	Otto Borufsen

	SecondByBorufsen



	K43R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k43r.f]

	R D Anderson

	Not Implemented



	K44R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k44r.f]

	William Adams

	SecondByWmAdams



	K45R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k45r.f]

	Michael F McGurrin

	Not Implemented



	K46R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k46r.f]

	Graham J Eatherley

	SecondByEatherley



	K47R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k47r.f]

	Richard Hufford

	SecondByRichardHufford



	K48R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k48r.f]

	George Hufford

	Not Implemented



	K49R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k49r.f]

	Rob Cave

	SecondByCave



	K50R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k50r.f]

	Rik Smoody

	Not Implemented



	K51R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k51r.f]

	John Willaim Colbert

	Not Implemented



	K52R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k52r.f]

	David A Smith

	Not Implemented



	K53R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k53r.f]

	Henry Nussbacher

	Not Implemented



	K54R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k54r.f]

	William H Robertson

	Not Implemented



	K55R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k55r.f]

	Steve Newman

	Not Implemented



	K56R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k56r.f]

	Stanley F Quayle

	Not Implemented



	K57R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k57r.f]

	Rudy Nydegger

	Not Implemented



	K58R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k58r.f]

	Glen Rowsam

	SecondByRowsam



	K59R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K59R.f]

	Leslie Downing

	RevisedDowning



	K60R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k60r.f]

	Jim Graaskamp and Ken Katzen

	SecondByGraaskampKatzen



	K61R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k61r.f]

	Danny C Champion

	SecondByChampion



	K62R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k62r.f]

	Howard R Hollander

	Not Implemented



	K63R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k63r.f]

	George Duisman

	Not Implemented



	K64R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k64r.f]

	Brian Yamachi

	SecondByYamachi



	K65R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k65r.f]

	Mark F Batell

	Not Implemented



	K66R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k66r.f]

	Ray Mikkelson

	Not Implemented



	K67R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k67r.f]

	Craig Feathers

	SecondByTranquilizer



	K68R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k68r.f]

	Fransois Leyvraz

	SecondByLeyvraz



	K69R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k69r.f]

	Johann Joss

	Not Implemented



	K70R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k70r.f]

	Robert Pebly

	Not Implemented



	K71R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k71r.f]

	James E Hall

	Not Implemented



	K72R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k72r.f]

	Edward C White Jr

	SecondByWhite



	K73R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K73R.f]

	George Zimmerman

	Not Implemented



	K74R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K74R.f]

	Edward Friedland

	Not Implemented



	K74RXX [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K74RXX.f]

	Edward Friedland

	Not Implemented



	K75R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K75R.f]

	Paul D Harrington

	SecondByHarrington



	K76R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k76r.f]

	David Gladstein

	SecondByGladstein



	K77R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k77r.f]

	Scott Feld

	Not Implemented



	K78R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k78r.f]

	Fred Mauk

	Not Implemented



	K79R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k79r.f]

	Dennis Ambuehl and Kevin Hickey

	Not Implemented



	K80R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k80r.f]

	Robyn M Dawes and Mark Batell

	Not Implemented



	K81R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k81r.f]

	Martyn Jones

	Not Implemented



	K82R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k82r.f]

	Robert A Leyland

	Not Implemented



	K83R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k83r.f]

	Paul E Black

	SecondByWhite



	K84R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k84r.f]

	T Nicolaus Tideman and Paula Chieruzzi

	SecondByTidemanChieruzzi



	K85R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k85r.f]

	Robert B Falk and James M Langsted

	Not Implemented



	K86R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k86r.f]

	Bernard Grofman

	Not Implemented



	K87R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k87r.f]

	E E H Schurmann

	Not Implemented



	K88R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k88r.f]

	Scott Appold

	SecondByAppold



	K89R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k89r.f]

	Gene Snodgrass

	Not Implemented



	K90R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k90r.f]

	John Maynard Smith

	TitFor2Tats



	K91R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k91r.f]

	Jonathan Pinkley

	Not Implemented



	K92R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/K92R.f]

	Anatol Rapoport

	TitForTat



	K93R [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/k93r.f]

	Unknown

	Not Implemented



	KPAVLOVC [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KPavlovC.f]

	Unknown

	WinStayLoseShift



	KRANDOMC [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KRandomC.f]

	Unknown

	Random



	KTF2TC [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KTF2TC.f]

	Unknown

	TitFor2Tats



	KTITFORTATC [https://github.com/Axelrod-Python/TourExec/blob/v0.2.0/src/strategies/KTitForTatC.f]

	Unknown

	TitForTat








Stewart and Plotkin’s Tournament (2012)

In 2012, Alexander Stewart and Joshua Plotkin [http://www.pnas.org/content/109/26/10134.full.pdf] ran a variant of
Axelrod’s tournament with 19 strategies to test the effectiveness of the then
newly discovered Zero-Determinant strategies.

The paper is identified as doi: 10.1073/pnas.1208087109 and referred to as
[Stewart2012] below. Unfortunately the details of the tournament and the
implementation of  strategies is not clear in the manuscript. We can, however,
make reasonable guesses to the implementation of many strategies based on their
names and classical definitions.

The following classical strategies are included in the library:


Strategies in Stewart and Plotkin’s tournament






	S&P Name

	Long Name

	Axelrod Library Name





	ALLC

	Always Cooperate

	Cooperator



	ALLD

	Always Defect

	Defector



	EXTORT-2

	Extort-2

	ZDExtort2



	HARD_MAJO

	Hard majority

	HardGoByMajority



	HARD_JOSS

	Hard Joss

	Joss



	HARD_TFT

	Hard tit for tat

	HardTitForTat



	HARD_TF2T

	Hard tit for 2 tats

	HardTitFor2Tats



	TFT

	Tit-For-Tat

	TitForTat



	GRIM

	Grim

	Grudger



	GTFT

	Generous Tit-For-Tat

	GTFT



	TF2T

	Tit-For-Two-Tats

	TitFor2Tats



	WSLS

	Win-Stay-Lose-Shift

	WinStayLoseShift



	RANDOM

	Random

	Random



	ZDGTFT-2

	ZDGTFT-2

	ZDGTFT2






ALLC, ALLD, TFT and RANDOM are defined above. The remaining classical
strategies are defined below. The tournament also included two Zero Determinant
strategies, both implemented in the library. The full table of strategies and
results is available
online [https://www.pnas.org/content/pnas/109/26/10134/F1.large.jpg?width=800&height=600&carousel=1].


Memory one strategies

In 2012 Press and Dyson [http://www.pnas.org/content/109/26/10409.full.pdf]
[Press2012] showed interesting results with regards to so called memory one
strategies.  Stewart and Plotkin implemented a number of these. A memory one
strategy is simply a probabilistic strategy that is defined by 4 parameters.
These four parameters dictate the probability of cooperating given 1 of 4
possible outcomes of the previous round:


	\(P(C\,|\,CC) = p_1\)


	\(P(C\,|\,CD) = p_2\)


	\(P(C\,|\,DC) = p_3\)


	\(P(C\,|\,DD) = p_4\)




The memory one strategy class is used to define a number of strategies below.



GTFT

Generous-Tit-For-Tat plays Tit-For-Tat with occasional forgiveness, which
prevents cycling defections against itself.

GTFT is defined as a memory-one strategy as follows:


	\(P(C\,|\,CC) = 1\)


	\(P(C\,|\,CD) = p\)


	\(P(C\,|\,DC) = 1\)


	\(P(C\,|\,DD) = p\)




where \(p = \min\left(1 - \frac{T-R}{R-S}, \frac{R-P}{T-P}\right)\).

GTFT came 2nd in average score and 18th in wins in S&P’s tournament.



TF2T

Tit-For-Two-Tats is like Tit-For-Tat but only retaliates after two defections
rather than one. This is not a memory-one strategy.

TF2T came 3rd in average score and last (?) in wins in S&P’s tournament.



WSLS

Win-Stay-Lose-Shift is a strategy that shifts if the highest payoff was not
earned in the previous round. WSLS is also known as “Win-Stay-Lose-Switch” and
“Pavlov”. It can be seen as a memory-one strategy as follows:


	\(P(C\,|\,CC) = 1\)


	\(P(C\,|\,CD) = 0\)


	\(P(C\,|\,DC) = 0\)


	\(P(C\,|\,DD) = 1\)




WSLS came 7th in average score and 13th in wins in S&P’s tournament.



RANDOM

Random is a strategy that was defined in Axelrod’s first tournament, note that this is also a memory-one strategy:


	\(P(C\,|\,CC) = 0.5\)


	\(P(C\,|\,CD) = 0.5\)


	\(P(C\,|\,DC) = 0.5\)


	\(P(C\,|\,DD) = 0.5\)




RANDOM came 8th in average score and 8th in wins in S&P’s tournament.



ZDGTFT-2

This memory-one strategy is defined by the following four conditional
probabilities based on the last round of play:


	\(P(C\,|\,CC) = 1\)


	\(P(C\,|\,CD) = 1/8\)


	\(P(C\,|\,DC) = 1\)


	\(P(C\,|\,DD) = 1/4\)




This strategy came 1st in average score and 16th in wins in S&P’s tournament.



EXTORT-2

This memory-one strategy is defined by the following four conditional
probabilities based on the last round of play:


	\(P(C\,|\,CC) = 8/9\)


	\(P(C\,|\,CD) = 1/2\)


	\(P(C\,|\,DC) = 1/3\)


	\(P(C\,|\,DD) = 0\)




This strategy came 18th in average score and 2nd in wins in S&P’s tournament.



GRIM

Grim is not defined in [Stewart2012] but it is defined elsewhere as follows.
GRIM (also called “Grim trigger”), cooperates until the opponent defects and
then always defects thereafter. In the library this strategy is called
Grudger.

GRIM came 10th in average score and 11th in wins in S&P’s tournament.



HARD_JOSS

HARD_JOSS is not defined in [Stewart2012] but is otherwise defined as a
strategy that plays like TitForTat but cooperates only with probability
\(0.9\). This is a memory-one strategy with the following probabilities:


	\(P(C\,|\,CC) = 0.9\)


	\(P(C\,|\,CD) = 0\)


	\(P(C\,|\,DC) = 1\)


	\(P(C\,|\,DD) = 0\)




HARD_JOSS came 16th in average score and 4th in wins in S&P’s tournament.

HARD_JOSS as described above is implemented in the library as Joss and is
the same as the Joss strategy from Axelrod’s first tournament.



HARD_MAJO

HARD_MAJO is not defined in [Stewart2012] and is presumably the same as “Go by Majority”, defined as follows: the strategy defects on the first move, defects
if the number of defections of the opponent is greater than or equal to the
number of times it has cooperated, and otherwise cooperates,

HARD_MAJO came 13th in average score and 5th in wins in S&P’s tournament.



HARD_TFT

Hard TFT is not defined in [Stewart2012] but is
elsewhere [http://www.prisoners-dilemma.com/strategies.html]
defined as follows. The strategy cooperates on the
first move, defects if the opponent has defected on any of the previous three
rounds, and otherwise cooperates.

HARD_TFT came 12th in average score and 10th in wins in S&P’s tournament.



HARD_TF2T

Hard TF2T is not defined in [Stewart2012] but is elsewhere defined as
follows. The strategy cooperates on the first move, defects if the opponent
has defected twice (successively) of the previous three rounds, and otherwise
cooperates.

HARD_TF2T came 6th in average score and 17th in wins in S&P’s tournament.



Calculator

This strategy is not unambiguously defined in [Stewart2012] but is defined
elsewhere. Calculator plays like Joss for 20 rounds. On the 21 round,
Calculator attempts to detect a cycle in the opponents history, and defects
unconditionally thereafter if a cycle is found. Otherwise Calculator plays like
TFT for the remaining rounds.



Prober

PROBE is not unambiguously defined in [Stewart2012] but is defined
elsewhere as Prober. The strategy starts by playing D, C, C on the first three
rounds and then defects forever if the opponent cooperates on rounds
two and three. Otherwise Prober plays as TitForTat would.

Prober came 15th in average score and 9th in wins in S&P’s tournament.



Prober2

PROBE2 is not unambiguously defined in [Stewart2012] but is defined
elsewhere as Prober2. The strategy starts by playing D, C, C on the first three
rounds and then cooperates forever if the opponent played D then C on rounds
two and three. Otherwise Prober2 plays as TitForTat would.

Prober2 came 9th in average score and 12th in wins in S&P’s tournament.



Prober3

PROBE3 is not unambiguously defined in [Stewart2012] but is defined
elsewhere as Prober3. The strategy starts by playing D, C on the first two
rounds and then defects forever if the opponent cooperated on round two.
Otherwise Prober3 plays as TitForTat would.

Prober3 came 17th in average score and 7th in wins in S&P’s tournament.



HardProber

HARD_PROBE is not unambiguously defined in [Stewart2012] but is defined
elsewhere as HardProber. The strategy starts by playing D, D, C, C on the first
four rounds and then defects forever if the opponent cooperates on rounds
two and three. Otherwise Prober plays as TitForTat would.

HardProber came 5th in average score and 6th in wins in S&P’s tournament.



NaiveProber

NAIVE_PROBER is a modification of Tit For Tat strategy which with a small
probability randomly defects. Default value for a probability of defection is
0.1.




Beaufils et al.’s tournament (1997)

In 1997, [Beaufils1997] the authors used a tournament to describe a new
strategy of their called “Gradual”. The description given in the paper of
“Gradual” is:


This strategy acts as tit-for-tat, except when it is time to forgive and
remember the past. It uses cooperation on the first move and then continues
to do so as long as the other player cooperates. Then after the first
defection of the other player, it defects one time and cooperates two times;
after the second defection of the opponent, it defects two times and
cooperates two times, … after the nth defection it reacts with n
consecutive defections and then calms down its opponent with two
cooperations.




This is the only description of the strategy however the paper does include a
table of results of the tournament. The scores of “Gradual” against the
opponents (including itself) are:


Score of Gradual reported in [Beaufils1997]






	Name

	Name used in [Beaufils1997]

	Score (1000 turns)





	Cooperator

	coop

	3000



	Defector

	def

	915



	Random

	rand

	2815



	Tit For Tat

	tft

	3000



	Grudger

	spite

	3000



	Cycler DDC

	p_nst

	2219



	Cycler CCD

	p_kn

	3472



	Go By Majority

	sft_mj

	3000



	Suspicious Tit For Tat

	mist

	2996



	Prober

	prob

	2999



	Gradual

	grad

	3000



	Win Stay Lose Shift

	pav

	3000






The following code reproduces the above:

>>> import axelrod as axl
>>> players = [axl.Cooperator(),
...            axl.Defector(),
...            axl.Random(),
...            axl.TitForTat(),
...            axl.Grudger(),
...            axl.CyclerDDC(),
...            axl.CyclerCCD(),
...            axl.GoByMajority(),
...            axl.SuspiciousTitForTat(),
...            axl.Prober(),
...            axl.OriginalGradual(),
...            axl.WinStayLoseShift(),
...            ]
>>> turns = 1000
>>> tournament = axl.Tournament(players, turns=turns, repetitions=1, seed=75)
>>> results = tournament.play(progress_bar=False)
>>> for average_score_per_turn in results.payoff_matrix[-2]:
...     print(round(average_score_per_turn * turns, 1))
3000.0
915.0
2763.0
3000.0
3000.0
2219.0
3472.0
3000.0
2996.0
2999.0
3000.0
3000.0





The OriginalGradual strategy implemented has the following description:


A player that punishes defections with a growing number of defections
but after punishing for punishment_limit number of times enters a calming
state and cooperates no matter what the opponent does for two rounds.

The punishment_limit is incremented whenever the opponent defects and the
strategy is not in either calming or punishing state.




Note that a different version of Gradual appears in [CRISTAL-SMAC2018].
This was brought to the attention of the maintainers of the library by one of the
authors of [Beaufils1997] and is documented here https://github.com/Axelrod-Python/Axelrod/issues/1294.

The strategy implemented in [CRISTAL-SMAC2018] and defined here as Gradual has the following description:


Similar to OriginalGradual, this is a player that punishes defections with a
growing number of defections but after punishing for punishment_limit
number of times enters a calming state and cooperates no matter what the
opponent does for two rounds.

This version of Gradual is an update of OriginalGradual and the difference
is that the punishment_limit is incremented whenever the opponent defects
(regardless of the state of the player).




This highlights the importance of best practice and reproducible computational
research. Both strategies implemented in this library are fully tested and
documented clearly and precisely.





          

      

      

    

  

    
      
          
            
  
Strategies index

Here are the docstrings of all the strategies in the library.


	
class axelrod.strategies.adaptive.Adaptive(initial_plays: List[axelrod.action.Action] = None)[source]

	Start with a specific sequence of C and D, then play the strategy that
has worked best, recalculated each turn.

Names:


	Adaptive: [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.adaptor.AbstractAdaptor(delta: Dict[Tuple[axelrod.action.Action, axelrod.action.Action], float], perr: float = 0.01)[source]

	An adaptive strategy that updates an internal state based on the last
round of play. Using this state the player Cooperates with a probability
derived from the state.


	s, float:

	the internal state, initially 0



	perr, float:

	an error threshold for misinterpreted moves



	delta, a dictionary of floats:

	additive update values for s depending on the last round’s outcome





Names:


	Adaptor: [Hauert2002]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.adaptor.AdaptorBrief[source]

	An Adaptor trained on short interactions.

Names:


	AdaptorBrief: [Hauert2002]









	
class axelrod.strategies.adaptor.AdaptorLong[source]

	An Adaptor trained on long interactions.

Names:


	AdaptorLong: [Hauert2002]









	
class axelrod.strategies.alternator.Alternator[source]

	A player who alternates between cooperating and defecting.

Names


	Alternator: [Axelrod1984]


	Periodic player CD: [Mittal2009]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.ann.ANN(num_features: int, num_hidden: int, weights: List[float] = None)[source]

	Artificial Neural Network based strategy.

A single layer neural network based strategy, with the following
features:
* Opponent’s first move is C
* Opponent’s first move is D
* Opponent’s second move is C
* Opponent’s second move is D
* Player’s previous move is C
* Player’s previous move is D
* Player’s second previous move is C
* Player’s second previous move is D
* Opponent’s previous move is C
* Opponent’s previous move is D
* Opponent’s second previous move is C
* Opponent’s second previous move is D
* Total opponent cooperations
* Total opponent defections
* Total player cooperations
* Total player defections
* Round number

Original Source: https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#file-ann-strategy-test-L60

Names


	Artificial Neural Network based strategy: Original name by Martin Jones





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.ann.EvolvableANN(num_features: int, num_hidden: int, weights: List[float] = None, mutation_probability: float = None, mutation_distance: int = 5, seed: int = None)[source]

	Evolvable version of ANN.


	
crossover(other)[source]

	Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.






	
mutate()[source]

	Optional method to allow Player to produce a variant (not in place).










	
class axelrod.strategies.ann.EvolvedANN[source]

	A strategy based on a pre-trained neural network with 17 features and a
hidden layer of size 10.

Trained using the axelrod_dojo version: 0.0.8
Training data is archived at doi.org/10.5281/zenodo.1306926

Names:



	Evolved ANN: Original name by Martin Jones.












	
class axelrod.strategies.ann.EvolvedANN5[source]

	A strategy based on a pre-trained neural network with 17 features and a
hidden layer of size 5.

Trained using the axelrod_dojo version: 0.0.8
Training data is archived at doi.org/10.5281/zenodo.1306931

Names:



	Evolved ANN 5: Original name by Marc Harper.












	
class axelrod.strategies.ann.EvolvedANNNoise05[source]

	A strategy based on a pre-trained neural network with a hidden layer of
size 5, trained with noise=0.05.

Trained using the axelrod_dojo version: 0.0.8
Training data i archived at doi.org/10.5281/zenodo.1314247.

Names:



	Evolved ANN Noise 5: Original name by Marc Harper.












	
axelrod.strategies.ann.activate(bias: List[float], hidden: List[float], output: List[float], inputs: List[int]) → float[source]

	
	Compute the output of the neural network:

	output = relu(inputs * hidden_weights + bias) * output_weights










	
axelrod.strategies.ann.compute_features(player: axelrod.player.Player, opponent: axelrod.player.Player) → List[int][source]

	Compute history features for Neural Network:
* Opponent’s first move is C
* Opponent’s first move is D
* Opponent’s second move is C
* Opponent’s second move is D
* Player’s previous move is C
* Player’s previous move is D
* Player’s second previous move is C
* Player’s second previous move is D
* Opponent’s previous move is C
* Opponent’s previous move is D
* Opponent’s second previous move is C
* Opponent’s second previous move is D
* Total opponent cooperations
* Total opponent defections
* Total player cooperations
* Total player defections
* Round number






	
axelrod.strategies.ann.split_weights(weights: List[float], num_features: int, num_hidden: int) → Tuple[List[List[float]], List[float], List[float]][source]

	Splits the input vector into the the NN bias weights and layer
parameters.






	
class axelrod.strategies.apavlov.APavlov2006[source]

	APavlov attempts to classify its opponent as one of five strategies:
Cooperative, ALLD, STFT, PavlovD, or Random. APavlov then responds in a
manner intended to achieve mutual cooperation or to defect against
uncooperative opponents.

Names:


	Adaptive Pavlov 2006: [Li2007]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.apavlov.APavlov2011[source]

	APavlov attempts to classify its opponent as one of four strategies:
Cooperative, ALLD, STFT, or Random. APavlov then responds in a manner
intended to achieve mutual cooperation or to defect against
uncooperative opponents.

Names:


	Adaptive Pavlov 2011: [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.appeaser.Appeaser[source]

	A player who tries to guess what the opponent wants.

Switch the classifier every time the opponent plays D.
Start with C, switch between C and D when opponent plays D.

Names:


	Appeaser: Original Name by Jochen Müller





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.averagecopier.AverageCopier[source]

	The player will cooperate with probability p if the opponent’s cooperation
ratio is p. Starts with random decision.

Names:


	Average Copier: Original name by Geraint Palmer





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.averagecopier.NiceAverageCopier[source]

	Same as Average Copier, but always starts by cooperating.

Names:


	Average Copier: Original name by Owen Campbell





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.









Strategies submitted to Axelrod’s first tournament. All strategies in this
module are prefixed by FirstBy to indicate that they were submitted in
Axelrod’s First tournament by the given author.

Note that these strategies are implemented from the descriptions presented
in:

Axelrod, R. (1980). Effective Choice in the Prisoner’s Dilemma.
Journal of Conflict Resolution, 24(1), 3–25.

These descriptions are not always clear and/or precise and when assumptions have
been made they are explained in the strategy docstrings.


	
class axelrod.strategies.axelrod_first.FirstByAnonymous[source]

	Submitted to Axelrod’s first tournament by a graduate student whose name was
withheld.

The description written in [Axelrod1980] is:

> “This rule has a probability of cooperating, P, which is initially 30% and
> is updated every 10 moves. P is adjusted if the other player seems random,
> very cooperative, or very uncooperative. P is also adjusted after move 130
> if the rule has a lower score than the other player. Unfortunately, the
> complex process of adjustment frequently left the probability of cooperation
> in the 30% to 70% range, and therefore the rule appeared random to many
> other players.”

Given the lack of detail this strategy is implemented based on the final
sentence of the description which is to have a cooperation probability that
is uniformly random in the 30 to 70% range.

Names:


	(Name withheld): [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstByDavis(rounds_to_cooperate: int = 10)[source]

	Submitted to Axelrod’s first tournament by Morton Davis.

The description written in [Axelrod1980] is:

> “A player starts by cooperating for 10 rounds then plays Grudger,
> defecting if at any point the opponent has defected.”

This strategy came 8th in Axelrod’s original tournament.

Names:


	Davis: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for the remaining rounds if the
opponent ever plays D.










	
class axelrod.strategies.axelrod_first.FirstByDowning[source]

	Submitted to Axelrod’s first tournament by Downing

The description written in [Axelrod1980] is:

> “This rule selects its choice to maximize its own longterm expected payoff on
> the assumption that the other rule cooperates with a fixed probability which
> depends only on whether the other player cooperated or defected on the previous
> move. These two probabilities estimates are continuously updated as the game
> progresses. Initially, they are both assumed to be .5, which amounts to the
> pessimistic assumption that the other player is not responsive. This rule is
> based on an outcome maximization interpretation of human performances proposed
> by Downing (1975).”

The Downing (1975) paper is “The Prisoner’s Dilemma Game as a
Problem-Solving Phenomenon” [Downing1975] and this is used to implement the
strategy.

There are a number of specific points in this paper, on page 371:

> “[…] In these strategies, O’s [the opponent’s] response on trial N is in
some way dependent or contingent on S’s [the subject’s] response on trial N-
1. All varieties of these lag-one matching strategies can be defined by two
parameters: the conditional probability that O will choose C following C by
S, P(C_o | C_s) and the conditional probability that O will choose C
following D by S, P(C_o, D_s).”

Throughout the paper the strategy (S) assumes that the opponent (O) is
playing a reactive strategy defined by these two conditional probabilities.

The strategy aims to maximise the long run utility against such a strategy
and the mechanism for this is described in Appendix A (more on this later).

One final point from the main text is, on page 372:

> “For the various lag-one matching strategies of O, the maximizing
strategies of S will be 100% C, or 100% D, or for some strategies all S
strategies will be functionally equivalent.”

This implies that the strategy S will either always cooperate or always
defect (or be indifferent) dependent on the opponent’s defining
probabilities.

To understand the particular mechanism that describes the strategy S, we
refer to Appendix A of the paper on page 389.

The stated goal of the strategy is to maximize (using the notation of the
paper):


EV_TOT = #CC(EV_CC) + #CD(EV_CD) + #DC(EV_DC) + #DD(EV_DD)




This differs from the more modern literature where #CC, #CD, #DC and #DD
would imply that counts of both players playing C and C, or the first
playing C and the second D etc…
In this case the author uses an argument based on the sequence of plays by
the player (S) so #CC denotes the number of times the player plays C twice
in a row.

On the second page of the appendix, figure 4 (page 390)
identifies an expression for EV_TOT.
A specific term is made to disappear in
the case of T - R = P - S (which is not the case for the standard
(R, P, S, T) = (3, 1, 0, 5)):

> “Where (t - r) = (p - s), EV_TOT will be a function of alpha, beta, t, r,
p, s and N are known and V which is unknown.

V is the total number of cooperations of the player S (this is noted earlier
in the abstract) and as such the final expression (with only V as unknown)
can be used to decide if V should indicate that S always cooperates or not.

This final expression is used to show that EV_TOT is linear in the number of
cooperations by the player thus justifying the fact that the player will
always cooperate or defect.

All of the above details are used to give the following interpretation of
the strategy:

1. On any given turn, the strategy will estimate alpha = P(C_o | C_s) and
beta = P(C_o | D_s).
2. The strategy will calculate the expected utility of always playing C OR
always playing D against the estimated probabilities. This corresponds to:



	In the case of the player always cooperating:

P_CC = alpha and P_CD = 1 - alpha



	In the case of the player always defecting:

P_DC = beta and P_DD = 1 - beta








Using this we have:


E_C = alpha R + (1 - alpha) S
E_D = beta T + (1 - beta) P




Thus at every turn, the strategy will calculate those two values and
cooperate if E_C > E_D and will defect if E_C < E_D.

In the case of E_C = E_D, the player will alternate from their previous
move. This is based on specific sentence from Axelrod’s original paper:

> “Under certain circumstances, DOWNING will even determine that the best
> strategy is to alternate cooperation and defection.”

One final important point is the early game behaviour of the strategy. It
has been noted that this strategy was implemented in a way that assumed that
alpha and beta were both 1/2:

> “Initially, they are both assumed to be .5, which amounts to the
> pessimistic assumption that the other player is not responsive.”

Note that if alpha = beta = 1 / 2 then:


E_C = alpha R + alpha S
E_D = alpha T + alpha P




And from the defining properties of the Prisoner’s Dilemma (T > R > P > S)
this gives: E_D > E_C.
Thus, the player opens with a defection in the first two rounds. Note that
from the Axelrod publications alone there is nothing to indicate defections
on the first two rounds, although a defection in the opening round is clear.
However there is a presentation available at
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/notes/azhar-ipd-Oct19th.pdf
That clearly states that Downing defected in the first two rounds, thus this
is assumed to be the behaviour. Interestingly, in future tournaments this
strategy was revised to not defect on the opening two rounds.

It is assumed that these first two rounds are used to create initial
estimates of
beta = P(C_o | D_s) and we will use the opening play of the player to
estimate alpha = P(C_o | C_s).
Thus we assume that the opponents first play is a response to a cooperation
“before the match starts”.

So for example, if the plays are:

[(D, C), (D, C)]

Then the opponent’s first cooperation counts as a cooperation in response to
the non existent cooperation of round 0. The total number of cooperations in
response to a cooperation is 1. We need to take in to account that extra
phantom cooperation to estimate the probability alpha=P(C_o | C_s) as 1 / 1
= 1.

This is an assumption with no clear indication from the literature.

–
This strategy came 10th in Axelrod’s original tournament.

Names:


	Downing: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstByFeld(start_coop_prob: float = 1.0, end_coop_prob: float = 0.5, rounds_of_decay: int = 200)[source]

	Submitted to Axelrod’s first tournament by Scott Feld.

The description written in [Axelrod1980] is:

> “This rule starts with tit for tat and gradually lowers its probability of
> cooperation following the other’s cooperation to .5 by the two hundredth
> move. It always defects after a defection by the other.”

This strategy plays Tit For Tat, always defecting if the opponent defects but
cooperating when the opponent cooperates with a gradually decreasing probability
until it is only .5. Note that the description does not clearly indicate how
the cooperation probability should drop. This implements a linear decreasing
function.

This strategy came 11th in Axelrod’s original tournament.

Names:


	Feld: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstByGraaskamp(alpha: float = 0.05)[source]

	Submitted to Axelrod’s first tournament by James Graaskamp.

The description written in [Axelrod1980] is:

> “This rule plays tit for tat for 50 moves, defects on move 51, and then
> plays 5 more moves of tit for tat. A check is then made to see if the player
> seems to be RANDOM, in which case it defects from then on. A check is also
> made to see if the other is TIT FOR TAT, ANALOGY (a program from the
> preliminary tournament), and its own twin, in which case it plays tit for
> tat. Otherwise it randomly defects every 5 to 15 moves, hoping that enough
> trust has been built up so that the other player will not notice these
> defections.:

This is implemented as:


	Plays Tit For Tat for the first 50 rounds;


	Defects on round 51;


	Plays 5 further rounds of Tit For Tat;


	A check is then made to see if the opponent is playing randomly in which
case it defects for the rest of the game. This is implemented with a chi
squared test.


	The strategy also checks to see if the opponent is playing Tit For Tat or
a clone of itself. If
so it plays Tit For Tat. If not it cooperates and randomly defects every 5
to 15 moves.




Note that there is no information about ‘Analogy’ available thus Step 5 is
a “best possible” interpretation of the description in the paper.
Furthermore the test for the clone is implemented as checking that both
players have played the same moves for the entire game. This is unlikely to
be the original approach but no further details are available.

This strategy came 9th in Axelrod’s original tournament.

Names:


	Graaskamp: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is the actual strategy










	
class axelrod.strategies.axelrod_first.FirstByGrofman[source]

	Submitted to Axelrod’s first tournament by Bernard Grofman.

The description written in [Axelrod1980] is:


> “If the players did different things on the previous move, this rule
> cooperates with probability 2/7. Otherwise this rule always cooperates.”




This strategy came 4th in Axelrod’s original tournament.

Names:


	Grofman: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstByJoss(p: float = 0.9)[source]

	Submitted to Axelrod’s first tournament by Johann Joss.

The description written in [Axelrod1980] is:

> “This rule cooperates 90% of the time after a cooperation by the other. It
> always defects after a defection by the other.”

This strategy came 12th in Axelrod’s original tournament.

Names:


	Joss: [Axelrod1980]


	Hard Joss: [Stewart2012]









	
class axelrod.strategies.axelrod_first.FirstByNydegger[source]

	Submitted to Axelrod’s first tournament by Rudy Nydegger.

The description written in [Axelrod1980] is:

> “The program begins with tit for tat for the first three moves, except
> that if it was the only one to cooperate on the first move and the only one
> to defect on the second move, it defects on the third move. After the third
> move, its choice is determined from the 3 preceding outcomes in the
> following manner. Let A be the sum formed by counting the other’s defection
> as 2 points and one’s own as 1 point, and giving weights of 16, 4, and 1 to
> the preceding three moves in chronological order. The choice can be
> described as defecting only when A equals 1, 6, 7, 17, 22, 23, 26, 29, 30,
> 31, 33, 38, 39, 45, 49, 54, 55, 58, or 61. Thus if all three preceding moves
> are mutual defection, A = 63 and the rule cooperates.  This rule was
> designed for use in laboratory experiments as a stooge which had a memory
> and appeared to be trustworthy, potentially cooperative, but not gullible
> (Nydegger, 1978).”

The program begins with tit for tat for the first three moves, except
that if it was the only one to cooperate on the first move and the only one
to defect on the second move, it defects on the third move. After the
third move, its choice is determined from the 3 preceding outcomes in the
following manner.


\[A = 16 a_1 + 4 a_2 + a_3\]

Where \(a_i\) is dependent on the outcome of the previous \(i\) th
round.  If both strategies defect, \(a_i=3\), if the opponent only defects:
\(a_i=2\) and finally if it is only this strategy that defects then
\(a_i=1\).

Finally this strategy defects if and only if:


\[A \in \{1, 6, 7, 17, 22, 23, 26, 29, 30, 31, 33, 38, 39, 45, 49, 54, 55, 58, 61\}\]

Thus if all three preceding moves are mutual defection, A = 63 and the rule
cooperates. This rule was designed for use in laboratory experiments as a
stooge which had a memory and appeared to be trustworthy, potentially
cooperative, but not gullible.

This strategy came 3rd in Axelrod’s original tournament.

Names:


	Nydegger: [Axelrod1980]





	
static score_history(my_history: List[axelrod.action.Action], opponent_history: List[axelrod.action.Action], score_map: Dict[Tuple[axelrod.action.Action, axelrod.action.Action], int]) → int[source]

	Implements the Nydegger formula A = 16 a_1 + 4 a_2 + a_3






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstByShubik[source]

	Submitted to Axelrod’s first tournament by Martin Shubik.

The description written in [Axelrod1980] is:

> “This rule cooperates until the other defects, and then defects once. If
> the other defects again after the rule’s cooperation is resumed, the rule
> defects twice. In general, the length of retaliation is increased by one for
> each departure from mutual cooperation. This rule is described with its
> strategic implications in Shubik (1970). Further treatment of its is given
> in Taylor (1976).

There is some room for interpretation as to how the strategy reacts to a
defection on the turn where it starts to cooperate once more. In Shubik
(1970) the strategy is described as:

> “I will play my move 1 to begin with and will continue to do so, so long
> as my information shows that the other player has chosen his move 1. If my
> information tells me he has used move 2, then I will use move 2 for the
> immediate k subsequent periods, after which I will resume using move 1. If
> he uses his move 2 again after I have resumed using move 1, then I will
> switch to move 2 for the k + 1 immediately subsequent periods … and so
> on, increasing my retaliation by an extra period for each departure from the
> (1, 1) steady state.”

This is interpreted as:

The player cooperates, if when it is cooperating, the opponent defects it
defects for k rounds. After k rounds it starts cooperating again and
increments the value of k if the opponent defects again.

This strategy came 5th in Axelrod’s original tournament.

Names:


	Shubik: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_first.FirstBySteinAndRapoport(alpha: float = 0.05)[source]

	Submitted to Axelrod’s first tournament by William Stein and Amnon Rapoport.

The description written in [Axelrod1980] is:

> “This rule plays tit for tat except that it cooperates on the first four
> moves, it defects on the last two moves, and every fifteen moves it checks
> to see if the opponent seems to be playing randomly. This check uses a
> chi-squared test of the other’s transition probabilities and also checks for
> alternating moves of CD and DC.

This is implemented as follows:


	It cooperates for the first 4 moves.


	It defects on the last 2 moves.


	Every 15 moves it makes use of a chi-squared
test [http://en.wikipedia.org/wiki/Chi-squared_test] to check if the
opponent is playing randomly. If so it defects.




This strategy came 6th in Axelrod’s original tournament.

Names:


	SteinAndRapoport: [Axelrod1980]





	
original_class

	alias of FirstBySteinAndRapoport










	
class axelrod.strategies.axelrod_first.FirstByTidemanAndChieruzzi[source]

	Submitted to Axelrod’s first tournament by Nicolas Tideman and Paula
Chieruzzi.

The description written in [Axelrod1980] is:

> “This rule begins with cooperation and tit for tat. However, when the
> other player finishes his second run of defec- tions, an extra punishment is
> instituted, and the number of punishing defections is increased by one with
> each run of the other’s defections. The other player is given a fresh start
> if he is 10 or more points behind, if he has not just started a run of
> defections, if it has been at least 20 moves since a fresh start, if there
> are at least 10 moves remaining, and if the number of defections differs
> from a 50-50 random generator by at least 3.0 standard deviations. A fresh
> start involves two cooperations and then play as if the game had just
> started. The program defects automatically on the last two moves.”

This is interpreted as:

1. Every run of defections played by the opponent increases the number of
defections that this strategy retaliates with by 1.


	
	The opponent is given a ‘fresh start’ if:

	
	it is 10 points behind this strategy


	and it has not just started a run of defections


	and it has been at least 20 rounds since the last ‘fresh start’


	and there are more than 10 rounds remaining in the match


	and the total number of defections differs from a 50-50 random sample
by at least 3.0 standard deviations.




A ‘fresh start’ is a sequence of two cooperations followed by an assumption
that the game has just started (everything is forgotten).







	The strategy defects on the last two moves.




This strategy came 2nd in Axelrod’s original tournament.

Names:


	TidemanAndChieruzzi: [Axelrod1980]





	
original_class

	alias of FirstByTidemanAndChieruzzi










	
class axelrod.strategies.axelrod_first.FirstByTullock[source]

	Submitted to Axelrod’s first tournament by Gordon Tullock.

The description written in [Axelrod1980] is:

> “This rule cooperates on the first eleven moves. It then cooperates 10%
> less than the other player has cooperated on the preceding ten moves. This
> rule is based on an idea developed in Overcast and Tullock (1971). Professor
> Tullock was invited to specify how the idea could be implemented, and he did
> so out of scientific interest rather than an expectation that it would be a
> likely winner.”

This is interpreted as:

Cooperates for the first 11 rounds then randomly cooperates 10% less often
than the opponent has in the previous 10 rounds.

This strategy came 13th in Axelrod’s original tournament.

Names:


	Tullock: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.









Strategies from Axelrod’s second tournament. All strategies in this module are
prefixed by SecondBy to indicate that they were submitted in Axelrod’s Second
tournament by the given author.


	
class axelrod.strategies.axelrod_second.SecondByAppold[source]

	Strategy submitted to Axelrod’s second tournament by Scott Appold (K88R) and
came in 22nd in that tournament.

Cooperates for first four turns.

After four turns, will cooperate immediately following the first time the
opponent cooperates (starting with the opponent’s fourth move).  Otherwise
will cooperate with probability equal to:


	If this strategy defected two turns ago, the portion of the time
(historically) that the opponent followed a defection with a cooperation.


	If this strategy cooperated two turns ago, the portion of the time
(historically) that the opponent followed a cooperation with a cooperation.
The opponent’s first move is counted as a response to a cooperation.




Names:


	Appold: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByBlack[source]

	Strategy submitted to Axelrod’s second tournament by Paul E Black (K83R)
and came in fifteenth in that tournament.

The strategy Cooperates for the first five turns.  Then it calculates the
number of opponent defects in the last five moves and Cooperates with
probability prob_coop`[`number_defects], where:

prob_coop[number_defects] = 1 - (number_defects^ 2 - 1) / 25

Names:


	Black: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByBorufsen[source]

	Strategy submitted to Axelrod’s second tournament by Otto Borufsen
(K32R), and came in third in that tournament.

This player keeps track of the the opponent’s responses to own behavior:


	cd_count counts: Opponent cooperates as response to player defecting.


	cc_count counts: Opponent cooperates as response to player cooperating.




The player has a defect mode and a normal mode.  In defect mode, the
player will always defect.  In normal mode, the player obeys the following
ranked rules:


	If in the last three turns, both the player/opponent defected, then
cooperate for a single turn.


	If in the last three turns, the player/opponent acted differently from
each other and they’re alternating, then change next defect to
cooperate.  (Doesn’t block third rule.)


	Otherwise, do tit-for-tat.




Start in normal mode, but every 25 turns starting with the 27th turn,
re-evaluate the mode.  Enter defect mode if any of the following
conditions hold:


	Detected random:  Opponent cooperated 7-18 times since last mode
evaluation (or start) AND less than 70% of opponent cooperation was in
response to player’s cooperation, i.e.
cc_count / (cc_count+cd_count) < 0.7


	Detect defective:  Opponent cooperated fewer than 3 times since last mode
evaluation.




When switching to defect mode, defect immediately.  The first two rules for
normal mode require that last three turns were in normal mode.  When starting
normal mode from defect mode, defect on first move.

Names:


	Borufsen: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
try_return(to_return)[source]

	We put the logic here to check for the flip_next_defect bit here,
and proceed like normal otherwise.










	
class axelrod.strategies.axelrod_second.SecondByCave[source]

	Strategy submitted to Axelrod’s second tournament by Rob Cave (K49R), and
came in fourth in that tournament.

First look for overly-defective or apparently random opponents, and defect
if found.  That is any opponent meeting one of:


	turn > 39 and percent defects > 0.39


	turn > 29 and percent defects > 0.65


	turn > 19 and percent defects > 0.79




Otherwise, respond to cooperation with cooperation.  And respond to defections
with either a defection (if opponent has defected at least 18 times) or with
a random (50/50) choice.  [Cooperate on first.]

Names:


	Cave: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByChampion[source]

	Strategy submitted to Axelrod’s second tournament by Danny Champion.

This player cooperates on the first 10 moves and plays Tit for Tat for the
next 15 more moves. After 25 moves, the program cooperates unless all the
following are true: the other player defected on the previous move, the
other player cooperated less than 60% and the random number between 0 and 1
is greater that the other player’s cooperation rate.

Names:


	Champion: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByColbert[source]

	Strategy submitted to Axelrod’s second tournament by William Colbert (K51R)
and came in eighteenth in that tournament.

In the first eight turns, this strategy Coopearates on all but the sixth
turn, in which it Defects.  After that, the strategy responds to an
opponent Cooperation with a single Cooperation, and responds to a Defection
with a chain of responses:  Defect, Defect, Cooperate, Cooperate.  During
this chain, the strategy ignores opponent’s moves.

Names:


	Colbert: [Axelrod1980b]









	
class axelrod.strategies.axelrod_second.SecondByEatherley[source]

	Strategy submitted to Axelrod’s second tournament by Graham Eatherley.

A player that keeps track of how many times in the game the other player
defected. After the other player defects, it defects with a probability
equal to the ratio of the other’s total defections to the total moves to
that point.

Names:


	Eatherley: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByGetzler[source]

	Strategy submitted to Axelrod’s second tournament by Abraham Getzler (K35R)
and came in eleventh in that tournament.

Strategy Defects with probability flack, where flack is calculated as
the sum over opponent Defections of 0.5 ^ (turns ago Defection happened).

Names:


	Getzler: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByGladstein[source]

	Submitted to Axelrod’s second tournament by David Gladstein.

This strategy is also known as Tester and is based on the reverse
engineering of the Fortran strategies from Axelrod’s second tournament.

This strategy is a TFT variant that defects on the first round in order to
test the opponent’s response. If the opponent ever defects, the strategy
‘apologizes’ by cooperating and then plays TFT for the rest of the game.
Otherwise, it defects as much as possible subject to the constraint that
the ratio of its defections to moves remains under 0.5, not counting the
first defection.

Names:


	Gladstein: [Axelrod1980b]


	Tester: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByGraaskampKatzen[source]

	Strategy submitted to Axelrod’s second tournament by Jim Graaskamp and Ken
Katzen (K60R), and came in sixth in that tournament.

Play Tit-for-Tat at first, and track own score.  At select checkpoints,
check for a high score.  Switch to Default Mode if:


	On move 11, score < 23


	On move 21, score < 53


	On move 31, score < 83


	On move 41, score < 113


	On move 51, score < 143


	On move 101, score < 293




Once in Defect Mode, defect forever.

Names:


	GraaskampKatzen: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByGrofman[source]

	Submitted to Axelrod’s second tournament by Bernard Grofman.

This strategy has 3 phases:


	First it cooperates on the first two rounds


	For rounds 3-7 inclusive, it plays the same as the opponent’s last move


	Thereafter, it applies the following logic, looking at its memory of the
last 8* rounds (ignoring the most recent round).






	If its own previous move was C and the opponent has defected less than
3 times in the last 8* rounds, cooperate


	If its own previous move was C and the opponent has defected 3 or
more times in the last 8* rounds, defect


	If its own previous move was D and the opponent has defected only once
or not at all in the last 8* rounds, cooperate


	If its own previous move was D and the opponent has defected more than
once in the last 8* rounds, defect







The code looks at the first 7 of the last 8 rounds, ignoring the most
recent round.

Names:
- Grofman’s strategy: [Axelrod1980b]
- K86R: [Axelrod1980b]


	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByHarrington[source]

	Strategy submitted to Axelrod’s second tournament by Paul Harrington (K75R)
and came in eighth in that tournament.

This strategy has three modes:  Normal, Fair-weather, and Defect.  These
mode names were not present in Harrington’s submission.

In Normal and Fair-weather modes, the strategy begins by:


	Update history


	Try to detect random opponent if turn is multiple of 15 and >=30.


	Check if burned flag should be raised.


	Check for Fair-weather opponent if turn is 38.




Updating history means to increment the correct cell of the move_history.
move_history is a matrix where the columns are the opponent’s previous
move and the rows are indexed by the combo of this player’s and the
opponent’s moves two turns ago.  [The upper-left cell must be all
Cooperations, but otherwise order doesn’t matter.]  After we enter Defect
mode, move_history won’t be used again.

If the turn is a multiple of 15 and >=30, then attempt to detect random.
If random is detected, enter Defect mode and defect immediately.  If the
player was previously in Defect mode, then do not re-enter.  The random
detection logic is a modified Pearson’s Chi Squared test, with some
additional checks.  [More details in detect_random docstrings.]

Some of this player’s moves are marked as “generous.”  If this player made
a generous move two turns ago and the opponent replied with a Defect, then
raise the burned flag.  This will stop certain generous moves later.

The player mostly plays Tit-for-Tat for the first 36 moves, then defects on
the 37th move.  If the opponent cooperates on the first 36 moves, and
defects on the 37th move also, then enter Fair-weather mode and cooperate
this turn.  Entering Fair-weather mode is extremely rare, since this can
only happen if the opponent cooperates for the first 36 then defects
unprovoked on the 37th.  (That is, this player’s first 36 moves are also
Cooperations, so there’s nothing really to trigger an opponent Defection.)

Next in Normal Mode:


	Check for defect and parity streaks.


	Check if cooperations are scheduled.


	Otherwise,





	If turn < 37, Tit-for-Tat.


	If turn = 37, defect, mark this move as generous, and schedule two
more cooperations**.


	If turn > 37, then if burned flag is raised, then Tit-for-Tat.
Otherwise, Tit-for-Tat with probability 1 - prob.  And with
probability prob, defect, schedule two cooperations, mark this move
as generous, and increase prob by 5%.




** Scheduling two cooperations means to set more_coop flag to two.  If in
Normal mode and no streaks are detected, then the player will cooperate and
lower this flag, until hitting zero.  It’s possible that the flag can be
overwritten.  Notable on the 37th turn defect, this is set to two, but the
38th turn Fair-weather check will set this.

If the opponent’s last twenty moves were defections, then defect this turn.
Then check for a parity streak, by flipping the parity bit (there are two
streaks that get tracked which are something like odd and even turns, but
this flip bit logic doesn’t get run every turn), then incrementing the
parity streak that we’re pointing to.  If the parity streak that we’re
pointing to is then greater than parity_limit then reset the streak and
cooperate immediately.  parity_limit is initially set to five, but after
it has been hit eight times, it decreases to three.  The parity streak that
we’re pointing to also gets incremented if in normal mode and we defect but
not on turn 38, unless we are defecting as the result of a defect streak.
Note that the parity streaks resets but the defect streak doesn’t.

If more_coop >= 1, then we cooperate and lower that flag here, in Normal
mode after checking streaks.  Still lower this flag if cooperating as the
result of a parity streak or in Fair-weather mode.

Then use the logic based on turn from above.

In Fair-Weather mode after running the code from above, check if opponent
defected last turn.  If so, exit Fair-Weather mode, and proceed THIS TURN
with Normal mode.  Otherwise cooperate.

In Defect mode, update the exit_defect_meter (originally zero) by
incrementing if opponent defected last turn and decreasing by three
otherwise.  If exit_defect_meter is then 11, then set mode to Normal (for
future turns), cooperate and schedule two more cooperations.  [Note that
this move is not marked generous.]

Names:


	Harrington: [Axelrod1980b]





	
calculate_chi_squared(turn)[source]

	Pearson’s Chi Squared statistic = sum[ (E_i-O_i)^2 / E_i ], where O_i
are the observed matrix values, and E_i is calculated as number (of
defects) in the row times the number in the column over (total number
in the matrix minus 1).  Equivalently, we expect we expect (for an
independent distribution) the total number of recorded turns times the
portion in that row times the portion in that column.

In this function, the statistic is non-standard in that it excludes
summands where E_i <= 1.






	
detect_parity_streak(last_move)[source]

	Switch which parity_streak we’re pointing to and incerement if the
opponent’s last move was a Defection.  Otherwise reset the flag.  Then
return true if and only if the parity_streak is at least
parity_limit.

This is similar to detect_streak with alternating streaks, except that
these streaks get incremented elsewhere as well.






	
detect_random(turn)[source]

	We check if the top-left cell of the matrix (corresponding to all
Cooperations) has over 80% of the turns.  In which case, we label
non-random.

Then we check if over 75% or under 25% of the opponent’s turns are
Defections.  If so, then we label as non-random.

Otherwise we calculates a modified Pearson’s Chi Squared statistic on
self.history, and returns True (is random) if and only if the statistic
is less than or equal to 3.






	
detect_streak(last_move)[source]

	Return true if and only if the opponent’s last twenty moves are defects.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
try_return(to_return, lower_flags=True, inc_parity=False)[source]

	This will return to_return, with some end-of-turn logic.










	
class axelrod.strategies.axelrod_second.SecondByKluepfel[source]

	Strategy submitted to Axelrod’s second tournament by Charles Kluepfel
(K32R).

This player keeps track of the the opponent’s responses to own behavior:


	cd_count counts: Opponent cooperates as response to player defecting.


	dd_count counts: Opponent defects as response to player defecting.


	cc_count counts: Opponent cooperates as response to player cooperating.


	dc_count counts: Opponent defects as response to player cooperating.




After 26 turns, the player then tries to detect a random player.  The
player decides that the opponent is random if
cd_counts >= (cd_counts+dd_counts)/2 - 0.75*sqrt(cd_counts+dd_counts) AND
cc_counts >= (dc_counts+cc_counts)/2 - 0.75*sqrt(dc_counts+cc_counts).
If the player decides that they are playing against a random player, then
they will always defect.

Otherwise respond to recent history using the following set of rules:


	If opponent’s last three choices are the same, then respond in kind.


	If opponent’s last two choices are the same, then respond in kind with
probability 90%.


	Otherwise if opponent’s last action was to cooperate, then cooperate
with probability 70%.


	Otherwise if opponent’s last action was to defect, then defect
with probability 60%.




Names:


	Kluepfel: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByLeyvraz[source]

	Strategy submitted to Axelrod’s second tournament by Fransois Leyvraz
(K68R) and came in twelfth in that tournament.

The strategy uses the opponent’s last three moves to decide on an action
based on the following ordered rules.


	If opponent Defected last two turns, then Defect with prob 75%.


	If opponent Defected three turns ago, then Cooperate.


	If opponent Defected two turns ago, then Defect.


	If opponent Defected last turn, then Defect with prob 50%.


	Otherwise (all Cooperations), then Cooperate.




Names:


	Leyvraz: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByMikkelson[source]

	Strategy submitted to Axelrod’s second tournament by Ray Mikkelson (K66R)
and came in twentieth in that tournament.

The strategy keeps track of a variable called credit, which determines if
the strategy will Cooperate, in the sense that if credit is positive,
then the strategy Cooperates.  credit is initialized to 7.  After the
first turn, credit increments if the opponent Cooperated last turn, and
decreases by two otherwise.  credit is capped above by 8 and below by -7.
[credit is assessed as postive or negative, after increasing based on
opponent’s last turn.]

If credit is non-positive within the first ten turns, then the strategy
Defects and credit is set to 4.  If credit is non-positive later, then
the strategy Defects if and only if (total # opponent Defections) / (turn#)
is at least 15%.  [Turn # starts at 1.]

Names:


	Mikkelson: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByRichardHufford[source]

	Strategy submitted to Axelrod’s second tournament by Richard Hufford (K47R)
and came in sixteenth in that tournament.

The strategy tracks opponent “agreements”, that is whenever the opponent’s
previous move is the some as this player’s move two turns ago.  If the
opponent’s first move is a Defection, this is counted as a disagreement,
and otherwise an agreement.  From the agreement counts, two measures are
calculated:


	proportion_agree:  This is the number of agreements (through opponent’s
last turn) + 2 divided by the current turn number.


	last_four_num:  The number of agreements in the last four turns.  If
there have been fewer than four previous turns, then this is number of
agreement + (4 - number of past turns).




We then use these measures to decide how to play, using these rules:


	If proportion_agree > 0.9 and last_four_num >= 4, then Cooperate.


	Otherwise if proportion_agree >= 0.625 and last_four_num >= 2, then
Tit-for-Tat.


	Otherwise, Defect.




However, if the opponent has Cooperated the last streak_needed turns,
then the strategy deviates from the usual strategy, and instead Defects.
(We call such deviation an “aberration”.)  In the turn immediately after an
aberration, the strategy doesn’t override, even if there’s a streak of
Cooperations.  Two turns after an aberration, the strategy:  Restarts the
Cooperation streak (never looking before this turn); Cooperates; and
changes streak_needed to:

floor(20.0 * num_abb_def / num_abb_coop) + 1

Here num_abb_def is 2 + the number of times that the opponent Defected in
the turn after an aberration, and num_abb_coop is 2 + the number of times
that the opponent Cooperated in response to an aberration.

Names:


	RichardHufford: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByRowsam[source]

	Strategy submitted to Axelrod’s second tournament by Glen Rowsam (K58R)
and came in 21st in that tournament.

The strategy starts in Normal mode, where it cooperates every turn.  Every
six turns it checks the score per turn.  [Rather the score of all previous
turns divided by the turn number, which will be one more than the number of
turns scored.]  If this measure is less than 2.5 (the strategy is doing
badly) and it increases distrust_points.  distrust_points is a variable
that starts at 0; if it ever exceeds 6 points, the strategy will enter
Defect mode and defect from then on.  It will increase distrust_points
depending on the precise score per turn according to:


	5 points if score per turn is less than 1.0


	3 points if score per turn is less than 1.5, but at least 1.0


	2 points if score per turn is less than 2.0, but at least 1.5


	1 points if score per turn is less than 2.5, but at least 2.0




If distrust_points are increased, then the strategy defects on that turn,
then cooperates and defects on the next two turns.  [Unless
distrust_points exceeds 6 points, then it will enter Defect mode
immediately.]

Every 18 turns in Normal mode, the strategy will decrement distrust_score
if it’s more than 3.  This represents a wearing off effect of distrust.

Names:


	Rowsam: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByTester[source]

	Submitted to Axelrod’s second tournament by David Gladstein.

This strategy is a TFT variant that attempts to exploit certain strategies. It
defects on the first move. If the opponent ever defects, TESTER ‘apologies’ by
cooperating and then plays TFT for the rest of the game. Otherwise TESTER
alternates cooperation and defection.

This strategy came 46th in Axelrod’s second tournament.

Names:


	Tester: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByTidemanAndChieruzzi[source]

	Strategy submitted to Axelrod’s second tournament by T. Nicolaus Tideman
and Paula Chieruzzi (K84R) and came in ninth in that tournament.

This strategy Cooperates if this player’s score exceeds the opponent’s
score by at least score_to_beat.  score_to_beat starts at zero and
increases by score_to_beat_inc every time the opponent’s last two moves
are a Cooperation and Defection in that order.  score_to_beat_inc itself
increase by 5 every time the opponent’s last two moves are a Cooperation
and Defection in that order.

Additionally, the strategy executes a “fresh start” if the following hold:


	The strategy would Defect by score (difference less than score_to_beat)


	The opponent did not Cooperate and Defect (in order) in the last two
turns.


	It’s been at least 10 turns since the last fresh start.  Or since the
match started if there hasn’t been a fresh start yet.




A “fresh start” entails two Cooperations and resetting scores,
scores_to_beat and scores_to_beat_inc.

Names:


	TidemanAndChieruzzi: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByTranquilizer[source]

	Submitted to Axelrod’s second tournament by Craig Feathers

Description given in Axelrod’s “More Effective Choice in the
Prisoner’s Dilemma” paper: The rule normally cooperates but
is ready to defect if the other player defects too often.
Thus the rule tends to cooperate for the first dozen or two moves
if the other player is cooperating, but then it throws in a
defection. If the other player continues to cooperate, then defections
become more frequent. But as long as Tranquilizer is maintaining an
average payoff of at least 2.25 points per move, it will never defect
twice in succession and it will not defect more than
one-quarter of the time.

This implementation is based on the reverse engineering of the
Fortran strategy K67R from Axelrod’s second tournament.
Reversed engineered by: Owen Campbell, Will Guo and Mansour Hakem.

The strategy starts by cooperating and has 3 states.

At the start of the strategy it updates its states:


	It counts the number of consecutive defections by the opponent.


	If it was in state 2 it moves to state 0 and calculates the
following quantities two_turns_after_good_defection_ratio and
two_turns_after_good_defection_ratio_count.

Formula for:

two_turns_after_good_defection_ratio:

self.two_turns_after_good_defection_ratio = (
((self.two_turns_after_good_defection_ratio
* self.two_turns_after_good_defection_ratio_count)
+ (3 - (3 * self.dict[opponent.history[-1]]))
+ (2 * self.dict[self.history[-1]])
- ((self.dict[opponent.history[-1]]
* self.dict[self.history[-1]])))
/ (self.two_turns_after_good_defection_ratio_count + 1)
)

two_turns_after_good_defection_ratio_count =
two_turns_after_good_defection_ratio + 1



	If it was in state 1 it moves to state 2 and calculates the
following quantities one_turn_after_good_defection_ratio and
one_turn_after_good_defection_ratio_count.

Formula for:

one_turn_after_good_defection_ratio:

self.one_turn_after_good_defection_ratio = (
((self.one_turn_after_good_defection_ratio
* self.one_turn_after_good_defection_ratio_count)
+ (3 - (3 * self.dict[opponent.history[-1]]))
+ (2 * self.dict[self.history[-1]])
- (self.dict[opponent.history[-1]]
* self.dict[self.history[-1]]))
/ (self.one_turn_after_good_defection_ratio_count + 1)
)

one_turn_after_good_defection_ratio_count:

one_turn_after_good_defection_ratio_count =
one_turn_after_good_defection_ratio + 1





If after this it is in state 1 or 2 then it cooperates.

If it is in state 0 it will potentially perform 1 of the 2
following stochastic tests:

1. If average score per turn is greater than 2.25 then it calculates a
value of probability:

probability = (
(.95 - (((self.one_turn_after_good_defection_ratio)
+ (self.two_turns_after_good_defection_ratio) - 5) / 15))
+ (1 / (((len(self.history))+1) ** 2))
- (self.dict[opponent.history[-1]] / 4)
)

and will cooperate if a random sampled number is less than that value of
probability. If it does not cooperate then the strategy moves to state 1
and defects.

2. If average score per turn is greater than 1.75 but less than 2.25
then it calculates a value of probability:

probability = (
(.25 + ((opponent.cooperations + 1) / ((len(self.history)) + 1)))
- (self.opponent_consecutive_defections * .25)
+ ((current_score[0]
- current_score[1]) / 100)
+ (4 / ((len(self.history)) + 1))
)

and will cooperate if a random sampled number is less than that value of
probability. If not, it defects.

If none of the above holds the player simply plays tit for tat.

Tranquilizer came in 27th place in Axelrod’s second torunament.

Names:


	Tranquilizer: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
update_state(opponent)[source]

	Calculates the ratio values for the one_turn_after_good_defection_ratio,
two_turns_after_good_defection_ratio and the probability values,
and sets the value of num_turns_after_good_defection.










	
class axelrod.strategies.axelrod_second.SecondByWeiner[source]

	Strategy submitted to Axelrod’s second tournament by Herb Weiner (K41R),
and came in seventh in that tournament.

Play Tit-for-Tat with a chance for forgiveness and a defective override.

The chance for forgiveness happens only if forgive_flag is raised
(flag discussed below).  If raised and turn is greater than grudge,
then override Tit-for-Tat with Cooperation.  grudge is a variable that
starts at 0 and increments 20 with each forgiven Defect (a Defect that is
overriden through the forgiveness logic).  forgive_flag is lower whether
logic is overriden or not.

The variable defect_padding increments with each opponent Defect, but
resets to zero with each opponent Cooperate (or forgive_flag lowering) so
that it roughly counts Defects between Cooperates.  Whenever the opponent
Cooperates, if defect_padding (before reseting) is odd, then we raise
forgive_flag for next turn.

Finally a defective override is assessed after forgiveness.  If five or
more of the opponent’s last twelve actions are Defects, then Defect.  This
will overrule a forgiveness, but doesn’t undo the lowering of
forgiveness_flag.  Note that “last twelve actions” doesn’t count the most
recent action.  Actually the original code updates history after checking
for defect override.

Names:


	Weiner: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
try_return(to_return)[source]

	We put the logic here to check for the defective override.










	
class axelrod.strategies.axelrod_second.SecondByWhite[source]

	Strategy submitted to Axelrod’s second tournament by Edward C White (K72R)
and came in thirteenth in that tournament.


	Cooperate in the first ten turns.


	If the opponent Cooperated last turn then Cooperate.


	
	Otherwise Defect if and only if:

	floor(log(turn)) * opponent Defections >= turn









Names:


	White: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByWmAdams[source]

	Strategy submitted to Axelrod’s second tournament by William Adams (K44R),
and came in fifth in that tournament.

Count the number of opponent defections after their first move, call
c_defect.  Defect if c_defect equals 4, 7, or 9.  If c_defect > 9,
then defect immediately after opponent defects with probability =
(0.5)^(c_defect-1).  Otherwise cooperate.

Names:


	WmAdams: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.axelrod_second.SecondByYamachi[source]

	Strategy submitted to Axelrod’s second tournament by Brian Yamachi (K64R)
and came in seventeenth in that tournament.

The strategy keeps track of play history through a variable called
count_them_us_them, which is a dict indexed by (X, Y, Z), where X is an
opponent’s move and Y and Z are the following moves by this player and the
opponent, respectively.  Each turn, we look at our opponent’s move two
turns ago, call X, and our move last turn, call Y.  If (X, Y, C) has
occurred more often (or as often) as (X, Y, D), then Cooperate.  Otherwise
Defect.  [Note that this reflects likelihood of Cooperations or Defections
in opponent’s previous move; we don’t update count_them_us_them with
previous move until next turn.]

Starting with the 41st turn, there’s a possibility to override this
behavior.  If portion_defect is between 45% and 55% (exclusive), then
Defect, where portion_defect equals number of opponent defects plus 0.5
divided by the turn number (indexed by 1).  When overriding this way, still
record count_them_us_them as though the strategy didn’t override.

Names:


	Yamachi: [Axelrod1980b]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
try_return(to_return, opp_def)[source]

	Return to_return, unless the turn is greater than 40 AND
portion_defect is between 45% and 55%.

In this case, still record the history as to_return so that the
modified behavior doesn’t affect the calculation of count_us_them_us.










	
class axelrod.strategies.backstabber.BackStabber[source]

	Forgives the first 3 defections but on the fourth
will defect forever. Defects on the last 2 rounds unconditionally.

Names:


	Backstabber: Original name by Thomas Campbell





	
original_class

	alias of BackStabber










	
class axelrod.strategies.backstabber.DoubleCrosser[source]

	Forgives the first 3 defections but on the fourth
will defect forever. Defects on the last 2 rounds unconditionally.

If 8 <= current round <= 180,
if the opponent did not defect in the first 7 rounds,
the player will only defect after the opponent has defected twice in-a-row.

Names:


	Double Crosser: Original name by Thomas Campbell





	
original_class

	alias of DoubleCrosser










	
class axelrod.strategies.better_and_better.BetterAndBetter[source]

	Defects with probability of ‘(1000 - current turn) / 1000’.
Therefore it is less and less likely to defect as the round goes on.


	Names:

	
	Better and Better: [Prison1998]









	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.bush_mosteller.BushMosteller(c_prob: float = 0.5, d_prob: float = 0.5, aspiration_level_divider: float = 3.0, learning_rate: float = 0.5)[source]

	A player that is based on Bush Mosteller reinforced learning algorithm, it
decides what it will
play only depending on its own previous payoffs.

The probability of playing C or D will be updated using a stimulus which
represents a win or a loss of value based on its previous play’s payoff in
the specified probability.  The more a play will be rewarded through rounds,
the more the player will be tempted to use it.

Names:


	Bush Mosteller: [Luis2008]





	
stimulus_update(opponent: axelrod.player.Player)[source]

	Updates the stimulus attribute based on the opponent’s history. Used by
the strategy.

Parameters


	opponentaxelrod.Player

	The current opponent










	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.calculator.Calculator[source]

	Plays like (Hard) Joss for the first 20 rounds. If periodic behavior is
detected, defect forever. Otherwise play TFT.

Names:


	Calculator: [Prison1998]





	
set_seed(seed: int = None)[source]

	Set a random seed for the player’s random number generator.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.cooperator.Cooperator[source]

	A player who only ever cooperates.

Names:


	Cooperator: [Axelrod1984]


	ALLC: [Press2012]


	Always cooperate: [Mittal2009]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.cooperator.TrickyCooperator[source]

	A cooperator that is trying to be tricky.

Names:


	Tricky Cooperator: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Almost always cooperates, but will try to trick the opponent by
defecting.

Defect once in a while in order to get a better payout.
After 3 rounds, if opponent has not defected to a max history depth of
10, defect.










	
class axelrod.strategies.cycler.AntiCycler[source]

	A player that follows a sequence of plays that contains no cycles:
CDD  CD  CCD CCCD CCCCD …

Names:


	Anti Cycler: Original name by Marc Harper





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.cycler.Cycler(cycle: str = 'CCD')[source]

	A player that repeats a given sequence indefinitely.

Names:


	Cycler: Original name by Marc Harper





	
set_cycle(cycle: str)[source]

	Set or change the cycle.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.cycler.CyclerCCCCCD[source]

	Cycles C, C, C, C, C, D

Names:


	Cycler CCCD: Original name by Marc Harper









	
class axelrod.strategies.cycler.CyclerCCCD[source]

	Cycles C, C, C, D

Names:


	Cycler CCCD: Original name by Marc Harper









	
class axelrod.strategies.cycler.CyclerCCCDCD[source]

	Cycles C, C, C, D, C, D

Names:


	Cycler CCCDCD: Original name by Marc Harper









	
class axelrod.strategies.cycler.CyclerCCD[source]

	Cycles C, C, D

Names:


	Cycler CCD: Original name by Marc Harper


	Periodic player CCD: [Mittal2009]









	
class axelrod.strategies.cycler.CyclerDC[source]

	Cycles D, C

Names:


	Cycler DC: Original name by Marc Harper









	
class axelrod.strategies.cycler.CyclerDDC[source]

	Cycles D, D, C

Names:


	Cycler DDC: Original name by Marc Harper


	Periodic player DDC: [Mittal2009]









	
class axelrod.strategies.cycler.EvolvableCycler(cycle: str = None, cycle_length: int = None, mutation_probability: float = 0.2, mutation_potency: int = 1, seed: int = None)[source]

	Evolvable version of Cycler.


	
crossover(other) → axelrod.evolvable_player.EvolvablePlayer[source]

	Creates and returns a new Player instance with a single crossover point.






	
mutate() → axelrod.evolvable_player.EvolvablePlayer[source]

	Basic mutation which may change any random actions in the sequence.









The player class in this module does not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising it.


	
class axelrod.strategies.darwin.Darwin[source]

	A strategy which accumulates a record (the ‘genome’) of what the most
favourable response in the previous round should have been, and naively
assumes that this will remain the correct response at the same round of
future trials.

This ‘genome’ is preserved between opponents, rounds and repetitions of
the tournament.  It becomes a characteristic of the type and so a single
version of this is shared by all instances for each loading of the class.

As this results in information being preserved between tournaments, this
is classified as a cheating strategy!

If no record yet exists, the opponent’s response from the previous round
is returned.

Names:


	Darwin: Original name by Paul Slavin





	
static foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead






	
mutate(outcome: tuple, trial: int) → None[source]

	Select response according to outcome.






	
reset()[source]

	Reset instance properties.






	
static reset_genome() → None[source]

	For use in testing methods.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.dbs.DBS(discount_factor=0.75, promotion_threshold=3, violation_threshold=4, reject_threshold=3, tree_depth=5)[source]

	A strategy that learns the opponent’s strategy and uses symbolic noise
detection for detecting whether anomalies in player’s behavior are
deliberate or accidental. From the learned opponent’s strategy, a tree
search is used to choose the best move.

Default values for the parameters are the suggested values in the article.
When noise increases you can try to diminish violation_threshold and
rejection_threshold.

Names


	Derived Belief Strategy: [Au2006]





	
compute_prob_rule(outcome, alpha=1)[source]

	Uses the game history to compute the probability of the opponent
playing C, in the outcome situation (example: outcome = (C, C)).
When alpha = 1, the results is approximately equal to the frequency of
the occurrence of outcome C. alpha is a discount factor that gives more
weight to recent events than earlier ones.

Parameters

outcome: tuple of two actions.Action
alpha: int, optional. Discount factor. Default is 1.






	
should_demote(r_minus, violation_threshold=4)[source]

	Checks if the number of successive violations of a deterministic
rule (in the opponent’s behavior) exceeds the user-defined
violation_threshold.






	
should_promote(r_plus, promotion_threshold=3)[source]

	This function determines if the move r_plus is a deterministic
behavior of the opponent, and then returns True, or if r_plus
is due to a random behavior (or noise) which would require a
probabilistic rule, in which case it returns False.

To do so it looks into the game history: if the k last times
when the opponent was in the same situation than in r_plus it
played the same thing then then r_plus is considered as a
deterministic rule (where K is the user-defined promotion_threshold).

Parameters


	r_plus: tuple of (tuple of actions.Action, actions.Action)

	example: ((C, C), D)
r_plus represents one outcome of the history, and the
following move played by the opponent.



	promotion_threshold: int, optional

	Number of successive observations needed to promote an
opponent behavior as a deterministic rule. Default is 3.










	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.






	
update_history_by_cond(opponent_history)[source]

	Updates self.history_by_cond between each turns of the game.










	
class axelrod.strategies.dbs.DeterministicNode(action1, action2, depth)[source]

	Nodes (C, C), (C, D), (D, C), or (D, D) with deterministic choice
for siblings.


	
get_siblings(policy)[source]

	Returns the siblings node of the current DeterministicNode. Builds 2
siblings (C, X) and (D, X) that are StochasticNodes. Those siblings are
of the same depth as the current node. Their probabilities pC are
defined by the policy argument.






	
is_stochastic()[source]

	Returns True if self is a StochasticNode.










	
class axelrod.strategies.dbs.Node[source]

	Nodes used to build a tree for the tree-search procedure. The tree has
Deterministic and Stochastic nodes, as the opponent’s strategy is learned
as a probability distribution.






	
class axelrod.strategies.dbs.StochasticNode(own_action, pC, depth)[source]

	Node that have a probability pC to get to each sibling. A StochasticNode can
be written (C, X) or (D, X), with X = C with a probability pC, else X = D.


	
get_siblings()[source]

	Returns the siblings node of the current StochasticNode. There are two
siblings which are DeterministicNodes, their depth is equal to current
node depth’s + 1.






	
is_stochastic()[source]

	Returns True if self is a StochasticNode.










	
axelrod.strategies.dbs.create_policy(pCC, pCD, pDC, pDD)[source]

	Creates a dict that represents a Policy. As defined in the reference, a
Policy is a set of (prev_move, p) where p is the probability to cooperate
after prev_move, where prev_move can be (C, C), (C, D), (D, C) or (D, D).

Parameters


	pCC, pCD, pDC, pDDfloat

	Must be between 0 and 1.










	
axelrod.strategies.dbs.minimax_tree_search(begin_node, policy, max_depth)[source]

	Tree search function (minimax search procedure) for the tree (built by
recursion) corresponding to the opponent’s policy, and solves it.
Returns a tuple of two floats that are the utility of playing C, and the
utility of playing D.






	
axelrod.strategies.dbs.move_gen(outcome, policy, depth_search_tree=5)[source]

	Returns the best move considering opponent’s policy and last move,
using tree-search procedure.






	
class axelrod.strategies.defector.Defector[source]

	A player who only ever defects.

Names:


	Defector: [Axelrod1984]


	ALLD: [Press2012]


	Always defect: [Mittal2009]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.defector.TrickyDefector[source]

	A defector that is trying to be tricky.

Names:


	Tricky Defector: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Almost always defects, but will try to trick the opponent into
cooperating.

Defect if opponent has cooperated at least once in the past and has
defected for the last 3 turns in a row.










	
class axelrod.strategies.doubler.Doubler[source]

	Cooperates except when the opponent has defected and
the opponent’s cooperation count is less than twice their defection count.

Names:


	Doubler: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.finite_state_machines.EvolvableFSMPlayer(transitions: tuple = None, initial_state: int = None, initial_action: axelrod.action.Action = None, num_states: int = None, mutation_probability: float = 0.1, seed: int = None)[source]

	Abstract base class for evolvable finite state machine players.


	
create_vector_bounds()[source]

	Creates the bounds for the decision variables.






	
crossover(other)[source]

	Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.






	
mutate()[source]

	Optional method to allow Player to produce a variant (not in place).






	
classmethod normalize_transitions(transitions: Sequence[Sequence[T_co]]) → Tuple[Tuple[Any, ...], ...][source]

	Translate a list of lists to a tuple of tuples.






	
receive_vector(vector)[source]

	Read a serialized vector into the set of FSM parameters (less initial
state).  Then assign those FSM parameters to this class instance.

The vector has three parts. The first is used to define the next state
(for each of the player’s states - for each opponents action).

The second part is the player’s next moves (for each state - for
each opponent’s actions).

Finally, a probability to determine the player’s first move.










	
class axelrod.strategies.finite_state_machines.EvolvedFSM16[source]

	A 16 state FSM player trained with an evolutionary algorithm.

Names:



	Evolved FSM 16: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.EvolvedFSM16Noise05[source]

	A 16 state FSM player trained with an evolutionary algorithm with
noisy matches (noise=0.05).

Names:



	Evolved FSM 16 Noise 05: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.EvolvedFSM4[source]

	A 4 state FSM player trained with an evolutionary algorithm.

Names:



	Evolved FSM 4: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.FSMPlayer(transitions: Tuple[Tuple[int, axelrod.action.Action, int, axelrod.action.Action], ...] = ((1, C, 1, C), (1, D, 1, D)), initial_state: int = 1, initial_action: axelrod.action.Action = C)[source]

	Abstract base class for finite state machine players.


	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.finite_state_machines.Fortress3[source]

	Finite state machine player specified in http://DOI.org/10.1109/CEC.2006.1688322.

Note that the description in http://www.graham-kendall.com/papers/lhk2011.pdf
is not correct.

Names:


	Fortress 3: [Ashlock2006b]









	
class axelrod.strategies.finite_state_machines.Fortress4[source]

	Finite state machine player specified in
http://DOI.org/10.1109/CEC.2006.1688322.

Note that the description in
http://www.graham-kendall.com/papers/lhk2011.pdf is not correct.

Names:


	Fortress 4: [Ashlock2006b]









	
class axelrod.strategies.finite_state_machines.Predator[source]

	Finite state machine player specified in
http://DOI.org/10.1109/CEC.2006.1688322.

Names:


	Predator: [Ashlock2006b]









	
class axelrod.strategies.finite_state_machines.Pun1[source]

	FSM player described in [Ashlock2006].

Names:


	Pun1: [Ashlock2006]









	
class axelrod.strategies.finite_state_machines.Raider[source]

	FSM player described in http://DOI.org/10.1109/FOCI.2014.7007818.

Names


	Raider: [Ashlock2014]









	
class axelrod.strategies.finite_state_machines.Ripoff[source]

	FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

Names


	Ripoff: [Ashlock2008]









	
class axelrod.strategies.finite_state_machines.SimpleFSM(transitions: tuple, initial_state: int)[source]

	Simple implementation of a finite state machine that transitions
between states based on the last round of play.

https://en.wikipedia.org/wiki/Finite-state_machine


	
move(opponent_action: axelrod.action.Action) → axelrod.action.Action[source]

	Computes the response move and changes state.






	
num_states()[source]

	Return the number of states of the machine.










	
class axelrod.strategies.finite_state_machines.SolutionB1[source]

	FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

Names


	Solution B1: [Ashlock2015]









	
class axelrod.strategies.finite_state_machines.SolutionB5[source]

	FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

Names


	Solution B5: [Ashlock2015]









	
class axelrod.strategies.finite_state_machines.TF1[source]

	A FSM player trained to maximize Moran fixation probabilities.

Names:



	TF1: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.TF2[source]

	A FSM player trained to maximize Moran fixation probabilities.

Names:



	TF2: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.TF3[source]

	A FSM player trained to maximize Moran fixation probabilities.

Names:



	TF3: Original name by Marc Harper












	
class axelrod.strategies.finite_state_machines.Thumper[source]

	FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

Names


	Thumper: [Ashlock2008]









	
class axelrod.strategies.finite_state_machines.UsuallyCooperates[source]

	This strategy cooperates except after a C following a D.

Names:


	Usually Cooperates (UC): [Ashlock2009]









	
class axelrod.strategies.finite_state_machines.UsuallyDefects[source]

	This strategy defects except after a D following a C.

Names:


	Usually Defects (UD): [Ashlock2009]









	
class axelrod.strategies.forgiver.Forgiver[source]

	A player starts by cooperating however will defect if at any point
the opponent has defected more than 10 percent of the time

Names:


	Forgiver: Original name by Thomas Campbell





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D if the opponent has defected more
than 10 percent of the time.










	
class axelrod.strategies.forgiver.ForgivingTitForTat[source]

	A player starts by cooperating however will defect if at any point, the
opponent has defected more than 10 percent of the time, and their most
recent decision was defect.

Names:


	Forgiving Tit For Tat: Original name by Thomas Campbell





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D if the opponent has defected more than
10 percent of the time and their most recent decision was defect.









Stochastic variants of Lookup table based-strategies, trained with particle
swarm algorithms.


	For the original see:

	https://gist.github.com/GDKO/60c3d0fd423598f3c4e4






	
class axelrod.strategies.gambler.EvolvableGambler(lookup_dict: dict = None, initial_actions: tuple = None, pattern: Any = None, parameters: axelrod.strategies.lookerup.Plays = None, mutation_probability: float = None, seed: int = None)[source]

	
	
create_vector_bounds()[source]

	Creates the bounds for the decision variables. Ignores extra parameters.






	
receive_vector(vector)[source]

	Receives a vector and updates the player’s pattern. Ignores extra parameters.










	
class axelrod.strategies.gambler.Gambler(lookup_dict: dict = None, initial_actions: tuple = None, pattern: Any = None, parameters: axelrod.strategies.lookerup.Plays = None)[source]

	A stochastic version of LookerUp which will select randomly an action in
some cases.

Names:


	Gambler: Original name by Georgios Koutsovoulos





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.gambler.PSOGambler1_1_1[source]

	A 1x1x1 PSOGambler trained with pyswarm.

Names:


	PSO Gambler 1_1_1: Original name by Marc Harper









	
class axelrod.strategies.gambler.PSOGambler2_2_2[source]

	A 2x2x2 PSOGambler trained with a particle swarm algorithm (implemented in
pyswarm). Original version by Georgios Koutsovoulos.

Names:


	PSO Gambler 2_2_2: Original name by Marc Harper









	
class axelrod.strategies.gambler.PSOGambler2_2_2_Noise05[source]

	A 2x2x2 PSOGambler trained with pyswarm with noise=0.05.

Names:


	PSO Gambler 2_2_2 Noise 05: Original name by Marc Harper









	
class axelrod.strategies.gambler.PSOGamblerMem1[source]

	A 1x1x0 PSOGambler trained with pyswarm. This is the ‘optimal’ memory one
strategy trained against the set of short run time strategies in the
Axelrod library.

Names:


	PSO Gambler Mem1: Original name by Marc Harper









	
class axelrod.strategies.gambler.ZDMem2[source]

	A memory two generalization of a zero determinant player.

Names:


	ZDMem2: Original name by Marc Harper


	Unnamed [LiS2014]








The player classes in this module do not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising them.


	
class axelrod.strategies.geller.Geller[source]

	Observes what the player will do in the next round and adjust.

If unable to do this: will play randomly.

This code is inspired by Matthew Williams’ talk
“Cheating at rock-paper-scissors — meta-programming in Python”
given at Django Weekend Cardiff in February 2014.

His code is here: https://github.com/mattjw/rps_metaprogramming
and there’s some more info here: http://www.mattjw.net/2014/02/rps-metaprogramming/

This code is way simpler than Matt’s, as in this exercise we already
have access to the opponent instance, so don’t need to go
hunting for it in the stack. Instead we can just call it to
see what it’s going to play, and return a result based on that

This is almost certainly cheating, and more than likely against the
spirit of the ‘competition’ :-)

Names:


	Geller: Original name by Martin Chorley (@martinjc)





	
foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Look at what the opponent will play in the next round and choose a strategy
that gives the least jail time, which is is equivalent to playing the same
strategy as that which the opponent will play.










	
class axelrod.strategies.geller.GellerCooperator[source]

	Observes what the player will do (like Geller) but if unable to
will cooperate.

Names:


	Geller Cooperator: Original name by Karol Langner





	
static foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead










	
class axelrod.strategies.geller.GellerDefector[source]

	Observes what the player will do (like Geller) but if unable to
will defect.

Names:


	Geller Defector: Original name by Karol Langner





	
static foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead










	
class axelrod.strategies.gobymajority.GoByMajority(memory_depth: Union[int, float] = inf, soft: bool = True)[source]

	Submitted to Axelrod’s second tournament by Gail Grisell.  It came 23rd
and was written in 10 lines of BASIC.

A player examines the history of the opponent: if the opponent has more
defections than cooperations then the player defects.

In case of equal
number of defections and cooperations this player will Cooperate. Passing
the soft=False keyword argument when initialising will create a
HardGoByMajority which Defects in case of equality.

An optional memory attribute will limit the number of turns remembered (by
default this is 0)

Names:


	Go By Majority: [Axelrod1984]


	Grisell: [Axelrod1980b]


	Soft Majority: [Mittal2009]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is affected by the history of the opponent.

As long as the opponent cooperates at least as often as they defect then
the player will cooperate.  If at any point the opponent has more
defections than cooperations in memory the player defects.










	
class axelrod.strategies.gobymajority.GoByMajority10[source]

	GoByMajority player with a memory of 10.

Names:


	Go By Majority 10: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.GoByMajority20[source]

	GoByMajority player with a memory of 20.

Names:


	Go By Majority 20: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.GoByMajority40[source]

	GoByMajority player with a memory of 40.

Names:


	Go By Majority 40: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.GoByMajority5[source]

	GoByMajority player with a memory of 5.

Names:


	Go By Majority 5: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.HardGoByMajority(memory_depth: Union[int, float] = inf)[source]

	A player examines the history of the opponent: if the opponent has more
defections than cooperations then the player defects. In case of equal
number of defections and cooperations this player will Defect.

An optional memory attribute will limit the number of turns remembered (by
default this is 0)

Names:


	Hard Majority: [Mittal2009]









	
class axelrod.strategies.gobymajority.HardGoByMajority10[source]

	HardGoByMajority player with a memory of 10.

Names:


	Hard Go By Majority 10: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.HardGoByMajority20[source]

	HardGoByMajority player with a memory of 20.

Names:


	Hard Go By Majority 20: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.HardGoByMajority40[source]

	HardGoByMajority player with a memory of 40.

Names:


	Hard Go By Majority 40: Original name by Karol Langner









	
class axelrod.strategies.gobymajority.HardGoByMajority5[source]

	HardGoByMajority player with a memory of 5.

Names:


	Hard Go By Majority 5: Original name by Karol Langner









	
class axelrod.strategies.gradualkiller.GradualKiller[source]

	It begins by defecting in the first five moves, then cooperates two times.
It then defects all the time if the opponent has defected in move 6 and 7,
else cooperates all the time.
Initially designed to stop Gradual from defeating TitForTat in a 3 Player
tournament.

Names


	Gradual Killer: [Prison1998]





	
original_class

	alias of GradualKiller










	
class axelrod.strategies.grudger.Aggravater[source]

	Grudger, except that it defects on the first 3 turns

Names


	Aggravater: Original name by Thomas Campbell





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.grudger.EasyGo[source]

	A player starts by defecting however will cooperate if at any point the
opponent has defected.

Names:


	Easy Go: [Prison1998]


	Reverse Grudger (RGRIM): [Li2011]


	Fool Me Forever: [Harper2017]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing D, then plays C for the remaining rounds if the
opponent ever plays D.










	
class axelrod.strategies.grudger.ForgetfulGrudger[source]

	A player starts by cooperating however will defect if at any point the
opponent has defected, but forgets after mem_length matches.

Names:


	Forgetful Grudger: Original name by Geraint Palmer





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for mem_length rounds if the
opponent ever plays D.










	
class axelrod.strategies.grudger.GeneralSoftGrudger(n: int = 1, d: int = 4, c: int = 2)[source]

	A generalization of the SoftGrudger strategy. SoftGrudger punishes by
playing: D, D, D, D, C, C. after a defection by the opponent.
GeneralSoftGrudger only punishes after its opponent defects a specified
amount of times consecutively. The punishment is in the form of a series of
defections followed by a ‘penance’ of a series of consecutive cooperations.

Names:


	General Soft Grudger: Original Name by J. Taylor Smith





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Punishes after its opponent defects ‘n’ times consecutively.
The punishment is in the form of ‘d’ defections followed by a penance of
‘c’ consecutive cooperations.










	
class axelrod.strategies.grudger.Grudger[source]

	A player starts by cooperating however will defect if at any point the
opponent has defected.

This strategy came 7th in Axelrod’s original tournament.

Names:


	Friedman’s strategy: [Axelrod1980]


	Grudger: [Li2011]


	Grim: [Berg2015]


	Grim Trigger: [Banks1990]


	Spite: [Beaufils1997]


	Spiteful: [Mathieu2015]


	Vengeful: [Ashlock2009]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for the remaining rounds if the
opponent ever plays D.










	
class axelrod.strategies.grudger.GrudgerAlternator[source]

	A player starts by cooperating until the first opponents defection,
then alternates D-C.

Names:


	c_then_per_dc: [Prison1998]


	Grudger Alternator: Original name by Geraint Palmer





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays Alternator for the remaining rounds
if the opponent ever plays D.










	
class axelrod.strategies.grudger.OppositeGrudger[source]

	A player starts by defecting however will cooperate if at any point the
opponent has cooperated.

Names:


	Opposite Grudger: Original name by Geraint Palmer





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing D, then plays C for the remaining rounds if the
opponent ever plays C.










	
class axelrod.strategies.grudger.SoftGrudger[source]

	A modification of the Grudger strategy. Instead of punishing by always
defecting: punishes by playing: D, D, D, D, C, C. (Will continue to
cooperate afterwards).


	Soft Grudger (SGRIM): [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D, D, D, D, C, C against a defection










	
class axelrod.strategies.grudger.SpitefulCC[source]

	Behaves like Grudger after cooperating for 2 turns

Names:


	spiteful_cc: [Mathieu2015]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Cooperates until the oponent defects, then defects forever.
Always cooperates twice at the start.










	
class axelrod.strategies.grumpy.Grumpy(starting_state: str = 'Nice', grumpy_threshold: int = 10, nice_threshold: int = -10)[source]

	A player that defects after a certain level of grumpiness.
Grumpiness increases when the opponent defects and decreases
when the opponent co-operates.

Names:


	Grumpy: Original name by Jason Young





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	A player that gets grumpier the more the opposition defects,
and nicer the more they cooperate.

Starts off Nice, but becomes grumpy once the grumpiness threshold is
hit. Won’t become nice once that grumpy threshold is hit, but must
reach a much lower threshold before it becomes nice again.










	
class axelrod.strategies.handshake.Handshake(initial_plays: List[axelrod.action.Action] = None)[source]

	Starts with C, D. If the opponent plays the same way, cooperate forever,
else defect forever.

Names:


	Handshake: [Robson1990]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hmm.EvolvableHMMPlayer(transitions_C=None, transitions_D=None, emission_probabilities=None, initial_state=0, initial_action=C, num_states=None, mutation_probability=None, seed: int = None)[source]

	Evolvable version of HMMPlayer.


	
create_vector_bounds()[source]

	Creates the bounds for the decision variables.






	
crossover(other)[source]

	Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.






	
mutate()[source]

	Optional method to allow Player to produce a variant (not in place).






	
receive_vector(vector)[source]

	Read a serialized vector into the set of HMM parameters (less initial
state).  Then assign those HMM parameters to this class instance.

Assert that the vector has the right number of elements for an HMMParams
class with self.num_states.

Assume the first num_states^2 entries are the transitions_C matrix.  The
next num_states^2 entries are the transitions_D matrix.  Then the next
num_states entries are the emission_probabilities vector.  Finally the last
entry is the initial_action.










	
class axelrod.strategies.hmm.EvolvedHMM5[source]

	An HMM-based player with five hidden states trained with an evolutionary
algorithm.

Names:



	Evolved HMM 5: Original name by Marc Harper












	
class axelrod.strategies.hmm.HMMPlayer(transitions_C=None, transitions_D=None, emission_probabilities=None, initial_state=0, initial_action=C)[source]

	Abstract base class for Hidden Markov Model players.

Names



	HMM Player: Original name by Marc Harper








	
is_stochastic() → bool[source]

	Determines if the player is stochastic.






	
set_seed(seed=None)[source]

	Set a random seed for the player’s random number generator.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hmm.SimpleHMM(transitions_C, transitions_D, emission_probabilities, initial_state)[source]

	Implementation of a basic Hidden Markov Model. We assume that the
transition matrix is conditioned on the opponent’s last action, so there
are two transition matrices. Emission distributions are stored as Bernoulli
probabilities for each state. This is essentially a stochastic FSM.

https://en.wikipedia.org/wiki/Hidden_Markov_model


	
is_well_formed() → bool[source]

	
	Determines if the HMM parameters are well-formed:

	
	Both matrices are stochastic


	Emissions probabilities are in [0, 1]


	The initial state is valid.













	
move(opponent_action: axelrod.action.Action) → axelrod.action.Action[source]

	Changes state and computes the response action.


	Parameters

	
	opponent_action: Axelrod.Action

	The opponent’s last action.


















	
axelrod.strategies.hmm.is_stochastic_matrix(m, ep=1e-08) → bool[source]

	Checks that the matrix m (a list of lists) is a stochastic matrix.






	
axelrod.strategies.hmm.mutate_row(row, mutation_probability, rng)[source]

	, crossover_lists_of_lists
Given a row of probabilities, randomly change each entry with probability
mutation_probability (a value between 0 and 1).  If changing, then change
by a value randomly (uniformly) chosen from [-0.25, 0.25] bounded by 0 and
100%.






	
class axelrod.strategies.hunter.AlternatorHunter[source]

	A player who hunts for alternators.

Names:


	Alternator Hunter: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hunter.CooperatorHunter[source]

	A player who hunts for cooperators.

Names:


	Cooperator Hunter: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hunter.CycleHunter[source]

	Hunts strategies that play cyclically, like any of the Cyclers,
Alternator, etc.

Names:


	Cycle Hunter: Original name by Marc Harper





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hunter.DefectorHunter[source]

	A player who hunts for defectors.

Names:


	Defector Hunter: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hunter.EventualCycleHunter[source]

	Hunts strategies that eventually play cyclically.

Names:


	Eventual Cycle Hunter: Original name by Marc Harper





	
strategy(opponent: axelrod.player.Player) → None[source]

	This is a placeholder strategy.










	
class axelrod.strategies.hunter.MathConstantHunter[source]

	A player who hunts for mathematical constant players.

Names:

Math Constant Hunter: Original name by Karol Langner


	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Check whether the number of cooperations in the first and second halves
of the history are close. The variance of the uniform distribution (1/4)
is a reasonable delta but use something lower for certainty and avoiding
false positives. This approach will also detect a lot of random players.










	
class axelrod.strategies.hunter.RandomHunter[source]

	A player who hunts for random players.

Names:


	Random Hunter: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	A random player is unpredictable, which means the conditional frequency
of cooperation after cooperation, and defection after defections, should
be close to 50%… although how close is debatable.










	
class axelrod.strategies.inverse.Inverse[source]

	A player who defects with a probability that diminishes relative to how
long ago the opponent defected.

Names:


	Inverse: Original Name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Looks at opponent history to see if they have defected.

If so, player defection is inversely proportional to when this occurred.










	
class axelrod.strategies.lookerup.EvolvableLookerUp(lookup_dict: dict = None, initial_actions: tuple = None, pattern: Any = None, parameters: axelrod.strategies.lookerup.Plays = None, mutation_probability: float = None, seed: int = None)[source]

	
	
crossover(other)[source]

	Optional method to allow Player to produce variants in combination with another player. Returns a new
Player.






	
mutate()[source]

	Optional method to allow Player to produce a variant (not in place).










	
class axelrod.strategies.lookerup.EvolvedLookerUp1_1_1[source]

	A 1 1 1 Lookerup trained with an evolutionary algorithm.

Names:


	Evolved Lookerup 1 1 1: Original name by Marc Harper









	
class axelrod.strategies.lookerup.EvolvedLookerUp2_2_2[source]

	A 2 2 2 Lookerup trained with an evolutionary algorithm.

Names:


	Evolved Lookerup 2 2 2: Original name by Marc Harper









	
class axelrod.strategies.lookerup.LookerUp(lookup_dict: dict = None, initial_actions: tuple = None, pattern: Any = None, parameters: axelrod.strategies.lookerup.Plays = None)[source]

	This strategy uses a LookupTable to decide its next action. If there is not
enough history to use the table, it calls from a list of
self.initial_actions.

if self_depth=2, op_depth=3, op_openings_depth=5, LookerUp finds the last 2
plays of self, the last 3 plays of opponent and the opening 5 plays of
opponent. It then looks those up on the LookupTable and returns the
appropriate action. If 5 rounds have not been played (the minimum required
for op_openings_depth), it calls from self.initial_actions.

LookerUp can be instantiated with a dictionary. The dictionary uses
tuple(tuple, tuple, tuple) or Plays as keys. for example.


	self_plays: depth=2


	op_plays: depth=1


	op_openings: depth=0:

{Plays((C, C), (C), ()): C,
 Plays((C, C), (D), ()): D,
 Plays((C, D), (C), ()): D,  <- example below
 Plays((C, D), (D), ()): D,
 Plays((D, C), (C), ()): C,
 Plays((D, C), (D), ()): D,
 Plays((D, D), (C), ()): C,
 Plays((D, D), (D), ()): D}









From the above table, if the player last played C, D and the opponent last
played C (here the initial opponent play is ignored) then this round,
the player would play D.

The dictionary must contain all possible permutations of C’s and D’s.

LookerUp can also be instantiated with pattern=str/tuple of actions, and:

parameters=Plays(
    self_plays=player_depth: int,
    op_plays=op_depth: int,
    op_openings=op_openings_depth: int)





It will create keys of len=2 ** (sum(parameters)) and map the pattern to
the keys.

initial_actions is a tuple such as (C, C, D). A table needs initial actions
equal to max(self_plays depth, opponent_plays depth, opponent_initial_plays
depth). If provided initial_actions is too long, the extra will be ignored.
If provided initial_actions is too short, the shortfall will be made up
with C’s.

Some well-known strategies can be expressed as special cases; for example
Cooperator is given by the dict (All history is ignored and always play C):

{Plays((), (), ()) : C}





Tit-For-Tat is given by (The only history that is important is the
opponent’s last play.):

{Plays((), (D,), ()): D,
 Plays((), (C,), ()): C}





LookerUp’s LookupTable defaults to Tit-For-Tat.  The initial_actions
defaults to playing C.

Names:


	Lookerup: Original name by Martin Jones





	
lookup_table_display(sort_by: tuple = ('op_openings', 'self_plays', 'op_plays')) → str[source]

	Returns a string for printing lookup_table info in specified order.


	Parameters

	sort_by – only_elements=’self_plays’, ‘op_plays’, ‘op_openings’










	
strategy(opponent: axelrod.player.Player) → Reaction[source]

	This is a placeholder strategy.










	
class axelrod.strategies.lookerup.LookupTable(lookup_dict: dict)[source]

	LookerUp and its children use this object to determine their next actions.

It is an object that creates a table of all possible plays to a specified
depth and the action to be returned for each combination of plays.
The “get” method returns the appropriate response.
For the table containing:

....
Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, C): D
Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, D): C
...





with:
player.history[-2:]=[C, C] and
opponent.history[-2:]=[C, D] and
opponent.history[:2]=[D, D],
calling LookupTable.get(plays=(C, C), op_plays=(C, D), op_openings=(D, D))
will return C.

Instantiate the table with a lookup_dict. This is
{(self_plays_tuple, op_plays_tuple, op_openings_tuple): action, …}.
It must contain every possible
permutation with C’s and D’s of the above tuple.  so:

good_dict = {((C,), (C,), ()): C,
             ((C,), (D,), ()): C,
             ((D,), (C,), ()): D,
             ((D,), (D,), ()): C}

bad_dict = {((C,), (C,), ()): C,
            ((C,), (D,), ()): C,
            ((D,), (C,), ()): D}





LookupTable.from_pattern() creates an ordered list of keys for you and maps
the pattern to the keys.:

LookupTable.from_pattern(pattern=(C, D, D, C),
    player_depth=0, op_depth=1, op_openings_depth=1
)





creates the dictionary:

{Plays(self_plays=(), op_plays=(C), op_openings=(C)): C,
 Plays(self_plays=(), op_plays=(C), op_openings=(D)): D,
 Plays(self_plays=(), op_plays=(D), op_openings=(C)): D,
 Plays(self_plays=(), op_plays=(D), op_openings=(D)): C,}





and then returns a LookupTable with that dictionary.


	
display(sort_by: tuple = ('op_openings', 'self_plays', 'op_plays')) → str[source]

	Returns a string for printing lookup_table info in specified order.


	Parameters

	sort_by – only_elements=’self_plays’, ‘op_plays’, ‘op_openings’














	
class axelrod.strategies.lookerup.Plays(self_plays, op_plays, op_openings)

	
	
op_openings

	Alias for field number 2






	
op_plays

	Alias for field number 1






	
self_plays

	Alias for field number 0










	
class axelrod.strategies.lookerup.Winner12[source]

	A lookup table based strategy.

Names:


	Winner12: [Mathieu2015]









	
class axelrod.strategies.lookerup.Winner21[source]

	A lookup table based strategy.

Names:


	Winner21: [Mathieu2015]









	
axelrod.strategies.lookerup.create_lookup_table_keys(player_depth: int, op_depth: int, op_openings_depth: int) → list[source]

	Returns a list of Plays that has all possible permutations of C’s and
D’s for each specified depth. the list is in order,
C < D sorted by ((player_tuple), (op_tuple), (op_openings_tuple)).
create_lookup_keys(2, 1, 0) returns:

[Plays(self_plays=(C, C), op_plays=(C,), op_openings=()),
 Plays(self_plays=(C, C), op_plays=(D,), op_openings=()),
 Plays(self_plays=(C, D), op_plays=(C,), op_openings=()),
 Plays(self_plays=(C, D), op_plays=(D,), op_openings=()),
 Plays(self_plays=(D, C), op_plays=(C,), op_openings=()),
 Plays(self_plays=(D, C), op_plays=(D,), op_openings=()),
 Plays(self_plays=(D, D), op_plays=(C,), op_openings=()),
 Plays(self_plays=(D, D), op_plays=(D,), op_openings=())]










	
axelrod.strategies.lookerup.get_last_n_plays(player: axelrod.player.Player, depth: int) → tuple[source]

	Returns the last N plays of player as a tuple.






	
axelrod.strategies.lookerup.make_keys_into_plays(lookup_table: dict) → dict[source]

	Returns a dict where all keys are Plays.






	
class axelrod.strategies.mathematicalconstants.CotoDeRatio[source]

	The player will always aim to bring the ratio of co-operations to
defections closer to the ratio as given in a sub class

Names:


	Co to Do Ratio: Original Name by Timothy Standen





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.mathematicalconstants.Golden[source]

	The player will always aim to bring the ratio of co-operations to
defections closer to the golden mean

Names:


	Golden: Original Name by Timothy Standen









	
class axelrod.strategies.mathematicalconstants.Pi[source]

	The player will always aim to bring the ratio of co-operations to
defections closer to the pi

Names:


	Pi: Original Name by Timothy Standen









	
class axelrod.strategies.mathematicalconstants.e[source]

	The player will always aim to bring the ratio of co-operations to
defections closer to the e

Names:


	e: Original Name by Timothy Standen








Memory Two strategies.


	
class axelrod.strategies.memorytwo.AON2[source]

	AON2 a memory two strategy introduced in [Hilbe2017]. It belongs to the
AONk (all-or-none) family of strategies. These strategies were designed to
satisfy the three following properties:

1. Mutually Cooperative. A strategy is mutually cooperative if there are
histories for which the strategy prescribes to cooperate, and if it continues
to cooperate after rounds with mutual cooperation (provided the last k actions
of the focal player were actually consistent).

2. Error correcting. A strategy is error correcting after at most k rounds if,
after any history, it generally takes a group of players at most k + 1 rounds
to re-establish mutual cooperation.

3. Retaliating. A strategy is retaliating for at least k rounds if, after
rounds in which the focal player cooperated while the coplayer defected,
the strategy responds by defecting the following k rounds.

In [Hilbe2017] the following vectors are reported as “equivalent” to AON2
with their respective self-cooperation rate (note that these are not the same):

1. [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], self-cooperation
rate: 0.952
2. [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], self-cooperation
rate: 0.951
3. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], self-cooperation
rate:  0.951
4. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1], self-cooperation
rate: 0.952

AON2 is implemented using vector 1 due its self-cooperation rate.

In essence it is a strategy that starts off by cooperating and will cooperate
again only after the states (CC, CC), (CD, CD), (DC, DC), (DD, DD).

Names:


	AON2: [Hilbe2017]









	
class axelrod.strategies.memorytwo.DelayedAON1[source]

	Delayed AON1 a memory two strategy also introduced in [Hilbe2017] and belongs
to the AONk family. Note that AON1 is equivalent to Win Stay Lose Shift.

In [Hilbe2017] the following vectors are reported as “equivalent” to Delayed
AON1 with their respective self-cooperation rate (note that these are not the
same):

1. [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], self-cooperation
rate: 0.952
2. [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], self-cooperation
rate: 0.970
3. [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1], self-cooperation
rate: 0.971

Delayed AON1 is implemented using vector 3 due its self-cooperation rate.

In essence it is a strategy that starts off by cooperating and will cooperate
again only after the states (CC, CC), (CD, CD), (CD, DD), (DD, CD),
(DC, DC) and (DD, DD).

Names:


	Delayed AON1: [Hilbe2017]









	
class axelrod.strategies.memorytwo.MEM2[source]

	A memory-two player that switches between TFT, TFTT, and ALLD.

Note that the reference claims that this is a memory two strategy but in
fact it is infinite memory. This is because the player plays as ALLD if
ALLD has ever been selected twice, which can only be known if the entire
history of play is accessible.

Names:


	MEM2: [Li2014]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.memorytwo.MemoryTwoPlayer(sixteen_vector: Optional[Tuple[float, ...]] = None, initial: Optional[Tuple[axelrod.action.Action, axelrod.action.Action]] = None)[source]

	Uses a sixteen-vector for strategies based on the 16 conditional probabilities
P(X | I,J,K,L) where X, I, J, K, L in [C, D] and I, J are the players last
two moves and K, L are the opponents last two moves. These conditional
probabilities are the following:
1.  P(C|CC, CC)
2.  P(C|CC, CD)
3.  P(C|CC, DC)
4.  P(C|CC, DD)
5.  P(C|CD, CC)
6.  P(C|CD, CD)
7.  P(C|CD, DC)
8.  P(C|CD, DD)
9.  P(C|DC, CC)
10. P(C|DC, CD)
11. P(C|DC, DC)
12. P(C|DC, DD)
13. P(C|DD, CC)
14. P(C|DD, CD)
15. P(C|DD, DC)
16. P(C|DD, DD)
Cooperator is set as the default player if sixteen_vector is not given.

Names


	Memory Two: [Hilbe2017]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.









Memory One strategies. Note that there are Memory One strategies in other
files, including titfortat.py and zero_determinant.py


	
class axelrod.strategies.memoryone.ALLCorALLD[source]

	This strategy is at the parameter extreme of the ZD strategies (phi = 0).
It simply repeats its last move, and so mimics ALLC or ALLD after round one.
If the tournament is noisy, there will be long runs of C and D.

For now starting choice is random of 0.6, but that was an arbitrary choice
at implementation time.

Names:


	ALLC or ALLD: Original name by Marc Harper


	Repeat: [Akin2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.memoryone.FirmButFair[source]

	A strategy that cooperates on the first move, and cooperates except after
receiving a sucker payoff.

Names:


	Firm But Fair: [Frean1994]









	
class axelrod.strategies.memoryone.GTFT(p: float = None)[source]

	Generous Tit For Tat Strategy.

Names:


	Generous Tit For Tat: [Nowak1993]


	Naive peace maker: [Gaudesi2016]


	Soft Joss: [Gaudesi2016]









	
class axelrod.strategies.memoryone.MemoryOnePlayer(four_vector: Tuple[float, float, float, float] = None, initial: axelrod.action.Action = C)[source]

	Uses a four-vector for strategies based on the last round of play,
(P(C|CC), P(C|CD), P(C|DC), P(C|DD)). Win-Stay Lose-Shift is set as
the default player if four_vector is not given.
Intended to be used as an abstract base class or to at least be supplied
with a initializing four_vector.

Names


	Memory One: [Nowak1990]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.memoryone.ReactivePlayer(probabilities: Tuple[float, float])[source]

	A generic reactive player. Defined by 2 probabilities conditional on the
opponent’s last move: P(C|C), P(C|D).

Names:


	Reactive: [Nowak1989]









	
class axelrod.strategies.memoryone.SoftJoss(q: float = 0.9)[source]

	Defects with probability 0.9 when the opponent defects, otherwise
emulates Tit-For-Tat.

Names:


	Soft Joss: [Prison1998]









	
class axelrod.strategies.memoryone.StochasticCooperator[source]

	Stochastic Cooperator.

Names:


	Stochastic Cooperator: [Adami2013]









	
class axelrod.strategies.memoryone.StochasticWSLS(ep: float = 0.05)[source]

	Stochastic WSLS, similar to Generous TFT. Note that this is not the same as
Stochastic WSLS described in [Amaral2016], that strategy is a modification
of WSLS that learns from the performance of other strategies.

Names:


	Stochastic WSLS: Original name by Marc Harper









	
class axelrod.strategies.memoryone.WinShiftLoseStay(initial: axelrod.action.Action = D)[source]

	Win-Shift Lose-Stay, also called Reverse Pavlov.

Names:


	WSLS: [Li2011]









	
class axelrod.strategies.memoryone.WinStayLoseShift[source]

	Win-Stay Lose-Shift, also called Pavlov.

Names:


	Win Stay Lose Shift: [Nowak1993]


	WSLS: [Stewart2012]


	Pavlov: [Kraines1989]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.meta.MemoryDecay(p_memory_delete: float = 0.1, p_memory_alter: float = 0.03, loss_value: float = -2, gain_value: float = 1, memory: list = None, start_strategy: axelrod.player.Player = <class 'axelrod.strategies.titfortat.TitForTat'>, start_strategy_duration: int = 15)[source]

	A player utilizes the (default) Tit for Tat strategy for the first (default) 15 turns,
at the same time memorizing the opponent’s decisions. After the 15 turns have
passed, the player calculates a ‘net cooperation score’ (NCS) for their opponent,
weighing decisions to Cooperate as (default) 1, and to Defect as (default)
-2. If the opponent’s NCS is below 0, the player defects; otherwise,
they cooperate.

The player’s memories of the opponent’s decisions have a random chance to be
altered (i.e., a C decision becomes D or vice versa; default probability
is 0.03) or deleted (default probability is 0.1).

It is possible to pass a different axelrod player class to change the initial
player behavior.

Name: Memory Decay


	
gain_loss_translate()[source]

	Translates the actions (D and C) to numeric values (loss_value and
gain_value).






	
memory_alter()[source]

	Alters memory entry, i.e. puts C if there’s a D and vice versa.






	
memory_delete()[source]

	Deletes memory entry.






	
meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaHunter[source]

	A player who uses a selection of hunters.

Names


	Meta Hunter: Original name by Karol Langner





	
static meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaHunterAggressive(team=None)[source]

	A player who uses a selection of hunters.

Names


	Meta Hunter Aggressive: Original name by Marc Harper





	
static meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaMajority(team=None)[source]

	A player who goes by the majority vote of all other non-meta players.

Names:


	Meta Majority: Original name by Karol Langner





	
static meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaMajorityFiniteMemory[source]

	MetaMajority with the team of Finite Memory Players

Names


	Meta Majority Finite Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaMajorityLongMemory[source]

	MetaMajority with the team of Long (infinite) Memory Players

Names


	Meta Majority Long Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaMajorityMemoryOne[source]

	MetaMajority with the team of Memory One players

Names


	Meta Majority Memory One: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaMinority(team=None)[source]

	A player who goes by the minority vote of all other non-meta players.

Names:


	Meta Minority: Original name by Karol Langner





	
static meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaMixer(team=None, distribution=None)[source]

	A player who randomly switches between a team of players.
If no distribution is passed then the player will uniformly choose between
sub players.

In essence this is creating a Mixed strategy.

Parameters


	teamlist of strategy classes, optional

	Team of strategies that are to be randomly played
If none is passed will select the ordinary strategies.



	distributionlist representing a probability distribution, optional

	This gives the distribution from which to select the players.
If none is passed will select uniformly.





Names


	Meta Mixer: Original name by Vince Knight





	
index_strategy(opponent)[source]

	When the team effectively has a single player, only use that strategy.






	
meta_strategy(results, opponent)[source]

	Using the _random.choice function to sample with weights.










	
class axelrod.strategies.meta.MetaPlayer(team=None)[source]

	A generic player that has its own team of players.

Names:


	Meta Player: Original name by Karol Langner





	
meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.






	
set_seed(seed=None)[source]

	Set a random seed for the player’s random number generator.






	
strategy(opponent)[source]

	This is a placeholder strategy.










	
class axelrod.strategies.meta.MetaWinner(team=None)[source]

	A player who goes by the strategy of the current winner.

Names:


	Meta Winner: Original name by Karol Langner





	
meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaWinnerDeterministic[source]

	Meta Winner with the team of Deterministic Players.

Names


	Meta Winner Deterministic: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaWinnerEnsemble(team=None)[source]

	A variant of MetaWinner that chooses one of the top scoring strategies
at random against each opponent. Note this strategy is always stochastic
regardless of the team, if team larger than 1, and the players are distinct.

Names:


	Meta Winner Ensemble: Original name by Marc Harper





	
meta_strategy(results, opponent)[source]

	Determine the meta result based on results of all players.
Override this function in child classes.










	
class axelrod.strategies.meta.MetaWinnerFiniteMemory[source]

	MetaWinner with the team of Finite Memory Players

Names


	Meta Winner Finite Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaWinnerLongMemory[source]

	MetaWinner with the team of Long (infinite) Memory Players

Names


	Meta Winner Long Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaWinnerMemoryOne[source]

	MetaWinner with the team of Memory One players

Names


	Meta Winner Memory Memory One: Original name by Marc Harper









	
class axelrod.strategies.meta.MetaWinnerStochastic[source]

	Meta Winner with the team of Stochastic Players.

Names


	Meta Winner Stochastic: Original name by Marc Harper









	
class axelrod.strategies.meta.NMWEDeterministic[source]

	Nice Meta Winner Ensemble with the team of Deterministic Players.

Names


	Nice Meta Winner Ensemble Deterministic: Original name by Marc Harper









	
class axelrod.strategies.meta.NMWEFiniteMemory[source]

	Nice Meta Winner Ensemble with the team of Finite Memory Players.

Names


	Nice Meta Winner Ensemble Finite Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.NMWELongMemory[source]

	Nice Meta Winner Ensemble with the team of Long Memory Players.

Names


	Nice Meta Winner Ensemble Long Memory: Original name by Marc Harper









	
class axelrod.strategies.meta.NMWEMemoryOne[source]

	Nice Meta Winner Ensemble with the team of Memory One Players.

Names


	Nice Meta Winner Ensemble Memory One: Original name by Marc Harper









	
class axelrod.strategies.meta.NMWEStochastic[source]

	Nice Meta Winner Ensemble with the team of Stochastic Players.

Names


	Nice Meta Winner Ensemble Stochastic: Original name by Marc Harper









	
class axelrod.strategies.meta.NiceMetaWinner(team=None)

	A player who goes by the strategy of the current winner.

Names:


	Meta Winner: Original name by Karol Langner





	
original_class

	alias of MetaWinner










	
class axelrod.strategies.meta.NiceMetaWinnerEnsemble(team=None)

	A variant of MetaWinner that chooses one of the top scoring strategies
at random against each opponent. Note this strategy is always stochastic
regardless of the team, if team larger than 1, and the players are distinct.

Names:


	Meta Winner Ensemble: Original name by Marc Harper





	
original_class

	alias of MetaWinnerEnsemble










	
class axelrod.strategies.mindcontrol.MindBender[source]

	A player that changes the opponent’s strategy by modifying the internal
dictionary.

Names


	Mind Bender: Original name by Karol Langner





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.mindcontrol.MindController[source]

	A player that changes the opponents strategy to cooperate.

Names


	Mind Controller: Original name by Karol Langner





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Alters the opponents strategy method to be a lambda function which
always returns C. This player will then always return D to take
advantage of this










	
class axelrod.strategies.mindcontrol.MindWarper[source]

	A player that changes the opponent’s strategy but blocks changes to
its own.

Names


	Mind Warper: Original name by Karol Langner





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.









The player classes in this module do not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising them.


	
class axelrod.strategies.mindreader.MindReader[source]

	A player that looks ahead at what the opponent will do and decides what
to do.

Names:


	Mind reader: Original name by Jason Young





	
static foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Pretends to play the opponent a number of times before each match.
The primary purpose is to look far enough ahead to see if a defect will
be punished by the opponent.










	
class axelrod.strategies.mindreader.MirrorMindReader[source]

	A player that will mirror whatever strategy it is playing against by
cheating and calling the opponent’s strategy function instead of its own.

Names:


	Protected Mind reader: Original name by Brice Fernandes





	
static foil_strategy_inspection() → axelrod.action.Action[source]

	Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Will read the mind of the opponent and play the opponent’s strategy.










	
class axelrod.strategies.mindreader.ProtectedMindReader[source]

	A player that looks ahead at what the opponent will do and decides what
to do. It is also protected from mind control strategies

Names:


	Protected Mind reader: Original name by Jason Young









	
class axelrod.strategies.mutual.Desperate[source]

	A player that only cooperates after mutual defection.

Names:


	Desperate: [Berg2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.mutual.Hopeless[source]

	A player that only defects after mutual cooperation.

Names:


	Hopeless: [Berg2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.mutual.Willing[source]

	A player that only defects after mutual defection.

Names:


	Willing: [Berg2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.negation.Negation[source]

	A player starts by cooperating or defecting randomly if it’s their first move,
then simply doing the opposite of the opponents last move thereafter.

Names:


	Negation: [PD2017]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.oncebitten.FoolMeOnce[source]

	Forgives one D then retaliates forever on a second D.

Names:


	Fool me once: Original name by Marc Harper





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.oncebitten.ForgetfulFoolMeOnce(forget_probability: float = 0.05)[source]

	Forgives one D then retaliates forever on a second D. Sometimes randomly
forgets the defection count, and so keeps a secondary count separate from
the standard count in Player.

Names:


	Forgetful Fool Me Once: Original name by Marc Harper





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.oncebitten.OnceBitten[source]

	Cooperates once when the opponent defects, but if they defect twice in a row
defaults to forgetful grudger for 10 turns defecting.

Names:


	Once Bitten: Original name by Holly Marissa





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for mem_length rounds if the opponent
ever plays D twice in a row.










	
class axelrod.strategies.prober.CollectiveStrategy[source]

	Defined in [Li2009]. ‘It always cooperates in the first move and defects
in the second move. If the opponent also cooperates in the first move and
defects in the second move, CS will cooperate until the opponent defects.
Otherwise, CS will always defect.’

Names:


	Collective Strategy: [Li2009]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.Detective(initial_actions: List[axelrod.action.Action] = None)[source]

	Starts with C, D, C, C, or with the given sequence of actions.
If the opponent defects at least once in the first fixed rounds,
play as TFT forever, else defect forever.

Names:


	Detective: [NC2019]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.HardProber[source]

	Plays D, D, C, C initially. Defects forever if opponent cooperated in moves
2 and 3. Otherwise plays TFT.

Names:


	Hard Prober: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.NaiveProber(p: float = 0.1)[source]

	Like tit-for-tat, but it occasionally defects with a small probability.

Names:


	Naive Prober: [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.Prober[source]

	Plays D, C, C initially. Defects forever if opponent cooperated in moves 2
and 3. Otherwise plays TFT.

Names:


	Prober: [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.Prober2[source]

	Plays D, C, C initially. Cooperates forever if opponent played D then C
in moves 2 and 3. Otherwise plays TFT.

Names:


	Prober 2: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.Prober3[source]

	Plays D, C initially. Defects forever if opponent played C in moves 2.
Otherwise plays TFT.

Names:


	Prober 3: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.Prober4[source]

	Plays C, C, D, C, D, D, D, C, C, D, C, D, C, C, D, C, D, D, C, D initially.
Counts retaliating and provocative defections of the opponent.
If the absolute difference between the counts is smaller or equal to 2,
defects forever.
Otherwise plays C for the next 5 turns and TFT for the rest of the game.

Names:


	Prober 4: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.prober.RemorsefulProber(p: float = 0.1)[source]

	Like Naive Prober, but it remembers if the opponent responds to a random
defection with a defection by being remorseful and cooperating.

For reference see: [Li2011]. A more complete description is given in “The
Selfish Gene” (https://books.google.co.uk/books?id=ekonDAAAQBAJ):

“Remorseful Prober remembers whether it has just spontaneously defected, and
whether the result was prompt retaliation. If so, it ‘remorsefully’ allows
its opponent ‘one free hit’ without retaliating.”

Names:


	Remorseful Prober: [Li2011]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.punisher.InversePunisher[source]

	An inverted version of Punisher. The player starts by cooperating however
will defect if at any point the opponent has defected, and forgets after
mem_length matches, with 1 <= mem_length <= 20. This time mem_length is
proportional to the amount of time the opponent has played C.

Names:


	Inverse Punisher: Original name by Geraint Palmer





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for an amount of rounds proportional
to the opponents historical ‘%’ of playing C if the opponent ever plays
D.










	
class axelrod.strategies.punisher.LevelPunisher[source]

	A player starts by cooperating however, after 10 rounds
will defect if at any point the number of defections
by an opponent is greater than 20%.

Names:


	Level Punisher: [Eckhart2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.punisher.Punisher[source]

	A player starts by cooperating however will defect if at any point the
opponent has defected, but forgets after meme_length matches, with
1<=mem_length<=20 proportional to the amount of time the opponent has
played D, punishing that player for playing D too often.

Names:


	Punisher: Original name by Geraint Palmer





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Begins by playing C, then plays D for an amount of rounds proportional
to the opponents historical ‘%’ of playing D if the opponent ever
plays D










	
class axelrod.strategies.punisher.TrickyLevelPunisher[source]

	A player starts by cooperating however, after 10, 50 and 100 rounds
will defect if at any point the percentage of defections
by an opponent is greater than 20%, 10% and 5% respectively.

Names:


	Tricky Level Punisher: [Eckhart2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.qlearner.ArrogantQLearner[source]

	A player who learns the best strategies through the q-learning
algorithm.

This Q learner jumps to quick conclusions and cares about the future.

Names:


	Arrogant Q Learner: Original name by Geraint Palmer









	
class axelrod.strategies.qlearner.CautiousQLearner[source]

	A player who learns the best strategies through the q-learning algorithm.

This Q learner is slower to come to conclusions and wants to look ahead
more.

Names:


	Cautious Q Learner: Original name by Geraint Palmer









	
class axelrod.strategies.qlearner.HesitantQLearner[source]

	A player who learns the best strategies through the q-learning algorithm.

This Q learner is slower to come to conclusions and does not look ahead much.

Names:


	Hesitant Q Learner: Original name by Geraint Palmer









	
class axelrod.strategies.qlearner.RiskyQLearner[source]

	A player who learns the best strategies through the q-learning
algorithm.

This Q learner is quick to come to conclusions and doesn’t care about the
future.

Names:


	Risky Q Learner: Original name by Geraint Palmer





	
find_reward(opponent: axelrod.player.Player) → Dict[axelrod.action.Action, Dict[axelrod.action.Action, Union[int, float]]][source]

	Finds the reward gained on the last iteration






	
find_state(opponent: axelrod.player.Player) → str[source]

	Finds the my_state (the opponents last n moves +
its previous proportion of playing C) as a hashable state






	
perform_q_learning(prev_state: str, state: str, action: axelrod.action.Action, reward)[source]

	Performs the qlearning algorithm






	
select_action(state: str) → axelrod.action.Action[source]

	Selects the action based on the epsilon-soft policy






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	Runs a qlearn algorithm while the tournament is running.










	
class axelrod.strategies.rand.Random(p: float = 0.5)[source]

	A player who randomly chooses between cooperating and defecting.

This strategy came 15th in Axelrod’s original tournament.

Names:


	Random: [Axelrod1980]


	Lunatic: [Tzafestas2000]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.resurrection.DoubleResurrection[source]

	A player starts by cooperating and defects if the number of rounds
played by the player is greater than five and the last five rounds
are cooperations.

If the last five rounds were defections, the player cooperates.

Names:


	DoubleResurrection: [Eckhart2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.resurrection.Resurrection[source]

	A player starts by cooperating and defects if the number of rounds
played by the player is greater than five and the last five rounds
are defections.

Otherwise, the strategy plays like Tit-for-tat.

Names:


	Resurrection: [Eckhart2015]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.retaliate.LimitedRetaliate(retaliation_threshold: float = 0.1, retaliation_limit: int = 20)[source]

	A player that co-operates unless the opponent defects and wins.
It will then retaliate by defecting. It stops when either, it has beaten
the opponent 10 times more often that it has lost or it reaches the
retaliation limit (20 defections).

Names:


	Limited Retaliate: Original name by Owen Campbell





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	If the opponent has played D to my C more often than x% of the time
that I’ve done the same to him, retaliate by playing D but stop doing
so once I’ve hit the retaliation limit.










	
class axelrod.strategies.retaliate.LimitedRetaliate2(retaliation_threshold: float = 0.08, retaliation_limit: int = 15)[source]

	LimitedRetaliate player with a threshold of 8 percent and a
retaliation limit of 15.

Names:


	Limited Retaliate 2: Original name by Owen Campbell









	
class axelrod.strategies.retaliate.LimitedRetaliate3(retaliation_threshold: float = 0.05, retaliation_limit: int = 20)[source]

	LimitedRetaliate player with a threshold of 5 percent and a
retaliation limit of 20.

Names:


	Limited Retaliate 3: Original name by Owen Campbell









	
class axelrod.strategies.retaliate.Retaliate(retaliation_threshold: float = 0.1)[source]

	A player starts by cooperating but will retaliate once the opponent
has won more than 10 percent times the number of defections the player has.

Names:


	Retaliate: Original name by Owen Campbell





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	If the opponent has played D to my C more often than x% of the time
that I’ve done the same to him, play D. Otherwise, play C.










	
class axelrod.strategies.retaliate.Retaliate2(retaliation_threshold: float = 0.08)[source]

	Retaliate player with a threshold of 8 percent.

Names:


	Retaliate 2: Original name by Owen Campbell









	
class axelrod.strategies.retaliate.Retaliate3(retaliation_threshold: float = 0.05)[source]

	Retaliate player with a threshold of 5 percent.

Names:


	Retaliate 3: Original name by Owen Campbell








Revised Downing implemented from the Fortran source code for the second of
Axelrod’s tournaments.


	
class axelrod.strategies.revised_downing.RevisedDowning[source]

	Strategy submitted to Axelrod’s second tournament by Leslie Downing.
(K59R).

Revised Downing attempts to determine if players are cooperative or not.
If so, it cooperates with them.

This strategy is a revision of the strategy submitted by Downing to
Axelrod’s first tournament.

Names:
- Revised Downing: [Axelrod1980]


	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.sequence_player.SequencePlayer(generator_function: function, generator_args: Tuple = ())[source]

	Abstract base class for players that use a generated sequence to
determine their plays.

Names:


	Sequence Player: Original name by Marc Harper





	
static meta_strategy(value: int) → axelrod.action.Action[source]

	Determines how to map the sequence value to cooperate or defect.
By default, treat values like python truth values. Override in child
classes for alternate behaviors.






	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.sequence_player.ThueMorse[source]

	A player who cooperates or defects according to the Thue-Morse sequence.
The first few terms of the Thue-Morse sequence are:
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 …

Thue-Morse sequence: http://mathworld.wolfram.com/Thue-MorseSequence.html

Names:


	Thue Morse: Original name by Geraint Palmer









	
class axelrod.strategies.sequence_player.ThueMorseInverse[source]

	A player who plays the inverse of the Thue-Morse sequence.

Names:


	Inverse Thue Morse: Original name by Geraint Palmer





	
static meta_strategy(value: int) → axelrod.action.Action[source]

	Determines how to map the sequence value to cooperate or defect.
By default, treat values like python truth values. Override in child
classes for alternate behaviors.










	
class axelrod.strategies.shortmem.ShortMem[source]

	A player starts by always cooperating for the first 10 moves.

From the tenth round on, the player analyzes the last ten actions, and
compare the number of defects and cooperates of the opponent, based in
percentage. If cooperation occurs 30% more than defection, it will
cooperate.
If defection occurs 30% more than cooperation, the program will defect.
Otherwise, the program follows the TitForTat algorithm.

Names:


	ShortMem: [Andre2013]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.selfsteem.SelfSteem[source]

	This strategy is based on the feeling with the same name.
It is modeled on the sine curve(f = sin( 2* pi * n / 10 )), which varies
with the current iteration.

If f > 0.95, ‘ego’ of the algorithm is inflated; always defects.
If 0.95 > abs(f) > 0.3, rational behavior; follows TitForTat algortithm.
If 0.3 > f > -0.3; random behavior.
If f < -0.95, algorithm is at rock bottom; always cooperates.

Futhermore, the algorithm implements a retaliation policy, if the opponent
defects; the sin curve is shifted. But due to lack of further information,
this implementation does not include a sin phase change.
Names:


	SelfSteem: [Andre2013]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.stalker.Stalker[source]

	This is a strategy which is only influenced by the score.
Its behavior is based on three values:
the very_bad_score (all rounds in defection)
very_good_score (all rounds in cooperation)
wish_score (average between bad and very_good score)

It starts with cooperation.


	If current_average_score > very_good_score, it defects


	If current_average_score lies in (wish_score, very_good_score) it
cooperates


	If current_average_score > 2, it cooperates


	If current_average_score lies in (1, 2)


	The remaining case, current_average_score < 1, it behaves randomly.


	It defects in the last round




Names:


	Stalker: [Andre2013]





	
original_class

	alias of Stalker










	
class axelrod.strategies.titfortat.AdaptiveTitForTat(rate: float = 0.5)[source]

	ATFT - Adaptive Tit For Tat (Basic Model)

Algorithm

if (opponent played C in the last cycle) then
world = world + r*(1-world)
else
world = world + r*(0-world)
If (world >= 0.5) play C, else play D

Attributes


	worldfloat [0.0, 1.0], set to 0.5

	continuous variable representing the world’s image
1.0 - total cooperation
0.0 - total defection
other values - something in between of the above
updated every round, starting value shouldn’t matter as long as
it’s >= 0.5





Parameters


	ratefloat [0.0, 1.0], default=0.5

	adaptation rate - r in Algorithm above
smaller value means more gradual and robust
to perturbations behaviour





Names:


	Adaptive Tit For Tat: [Tzafestas2000]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.Alexei[source]

	Plays similar to Tit-for-Tat, but always defect on last turn.

Names:


	Alexei: [LessWrong2011]





	
original_class

	alias of Alexei










	
class axelrod.strategies.titfortat.AntiTitForTat[source]

	A strategy that plays the opposite of the opponents previous move.
This is similar to Bully, except that the first move is cooperation.

Names:


	Anti Tit For Tat: [Hilbe2013]


	Psycho (PSYC): [Ashlock2009]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.Bully[source]

	A player that behaves opposite to Tit For Tat, including first move.

Starts by defecting and then does the opposite of opponent’s previous move.
This is the complete opposite of Tit For Tat, also called Bully in the
literature.

Names:


	Reverse Tit For Tat: [Nachbar1992]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.ContriteTitForTat[source]

	A player that corresponds to Tit For Tat if there is no noise. In the case
of a noisy match: if the opponent defects as a result of a noisy defection
then ContriteTitForTat will become ‘contrite’ until it successfully
cooperates.

Names:


	Contrite Tit For Tat: [Axelrod1995]





	
original_class

	alias of ContriteTitForTat










	
class axelrod.strategies.titfortat.DynamicTwoTitsForTat[source]

	A player starts by cooperating and then punishes its opponent’s
defections with defections, but with a dynamic bias towards cooperating
based on the opponent’s ratio of cooperations to total moves
(so their current probability of cooperating regardless of the
opponent’s move (aka: forgiveness)).

Names:



	Dynamic Two Tits For Tat: Original name by Grant Garrett-Grossman.








	
strategy(opponent)[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.EugineNier[source]

	Plays similar to Tit-for-Tat, but with two conditions:
1) Always Defect on Last Move
2) If other player defects five times, switch to all defects.

Names:


	Eugine Nier: [LessWrong2011]





	
original_class

	alias of EugineNier










	
class axelrod.strategies.titfortat.Gradual[source]

	Similar to OriginalGradual, this is a player that punishes defections with a
growing number of defections but after punishing for punishment_limit
number of times enters a calming state and cooperates no matter what the
opponent does for two rounds.

This version of Gradual is an update of OriginalGradual and the difference
is that the punishment_limit is incremented whenever the opponent defects
(regardless of the state of the player).

Note that this version of Gradual appears in [CRISTAL-SMAC2018] however
this version of
Gradual does not give the results reported in [Beaufils1997] which is the
paper that first introduced the strategy. For a longer discussion of this
see: https://github.com/Axelrod-Python/Axelrod/issues/1294.

This version is based on  https://github.com/cristal-smac/ipd/blob/master/src/strategies.py#L224

Names:


	Gradual: [CRISTAL-SMAC2018]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.HardTitFor2Tats[source]

	A variant of Tit For Two Tats that uses a longer history for
retaliation.

Names:


	Hard Tit For Two Tats: [Stewart2012]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.HardTitForTat[source]

	A variant of Tit For Tat that uses a longer history for retaliation.

Names:


	Hard Tit For Tat: [PD2017]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.Michaelos[source]

	Plays similar to Tit-for-Tat with two exceptions:
1) Defect on last turn.
2) After own defection and opponent’s cooperation, 50 percent of the time,
cooperate. The other 50 percent of the time, always defect for the rest of
the game.

Names:


	Michaelos: [LessWrong2011]





	
original_class

	alias of Michaelos










	
class axelrod.strategies.titfortat.NTitsForMTats(N: int = 3, M: int = 2)[source]

	A parameterizable Tit-for-Tat,
The arguments are:
1) M: the number of defection before retaliation
2) N: the number of retaliations

Names:


	N Tit(s) For M Tat(s): Original name by Marc Harper





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.OmegaTFT(deadlock_threshold: int = 3, randomness_threshold: int = 8)[source]

	OmegaTFT modifies Tit For Tat in two ways:
- checks for deadlock loops of alternating rounds of (C, D) and (D, C),
and attempting to break them
- uses a more sophisticated retaliation mechanism that is noise tolerant

Names:


	OmegaTFT: [Slany2007]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.OriginalGradual[source]

	A player that punishes defections with a growing number of defections
but after punishing for punishment_limit number of times enters a calming
state and cooperates no matter what the opponent does for two rounds.

The punishment_limit is incremented whenever the opponent defects and the
strategy is not in either calming or punishing state.

Note that Gradual appears in [CRISTAL-SMAC2018] however that version of
Gradual does not give the results reported in [Beaufils1997] which is the
paper that first introduced the strategy. For a longer discussion of this
see: https://github.com/Axelrod-Python/Axelrod/issues/1294. This is why this
strategy has been renamed to OriginalGradual.

Names:


	Gradual: [Beaufils1997]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.RandomTitForTat(p: float = 0.5)[source]

	A player starts by cooperating and then follows by copying its
opponent (tit for tat style).  From then on the player
will switch between copying its opponent and randomly
responding every other iteration.

Name:


	Random TitForTat: Original name by Zachary M. Taylor





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is the actual strategy










	
class axelrod.strategies.titfortat.SlowTitForTwoTats2[source]

	A player plays C twice, then if the opponent plays the same move twice,
plays that move, otherwise plays previous move.

Names:


	Slow Tit For Tat: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.SneakyTitForTat[source]

	Tries defecting once and repents if punished.

Names:


	Sneaky Tit For Tat: Original name by Karol Langner





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.SpitefulTitForTat[source]

	A player starts by cooperating and then mimics the previous action of the
opponent until opponent defects twice in a row, at which point player
always defects

Names:


	Spiteful Tit For Tat: [Prison1998]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.SuspiciousTitForTat[source]

	A variant of Tit For Tat that starts off with a defection.

Names:


	Suspicious Tit For Tat: [Hilbe2013]


	Mistrust: [Beaufils1997]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.TitFor2Tats[source]

	A player starts by cooperating and then defects only after two defects by
opponent.

Submitted to Axelrod’s second tournament by John Maynard Smith; it came in
24th in that tournament.

Names:


	Tit for two Tats: [Axelrod1984]


	Slow tit for two tats: Original name by Ranjini Das


	JMaynardSmith: [Axelrod1980b]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.titfortat.TitForTat[source]

	A player starts by cooperating and then mimics the previous action of the
opponent.

This strategy was referred to as the ‘simplest’ strategy submitted to
Axelrod’s first tournament. It came first.

Note that the code for this strategy is written in a fairly verbose
way. This is done so that it can serve as an example strategy for
those who might be new to Python.

Names:


	Rapoport’s strategy: [Axelrod1980]


	TitForTat: [Axelrod1980]





	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is the actual strategy










	
class axelrod.strategies.titfortat.TwoTitsForTat[source]

	A player starts by cooperating and replies to each defect by two
defections.

Names:


	Two Tits for Tats: [Axelrod1984]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.verybad.VeryBad[source]

	It cooperates in the first three rounds, and uses probability
(it implements a memory, which stores the opponent’s moves) to decide for
cooperating or defecting.
Due to a lack of information as to what that probability refers to in this
context, probability(P(X)) refers to (Count(X)/Total_Moves) in this
implementation
P(C) = Cooperations / Total_Moves
P(D) = Defections / Total_Moves = 1 - P(C)

Names:


	VeryBad: [Andre2013]





	
static strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.worse_and_worse.KnowledgeableWorseAndWorse[source]

	This strategy is based on ‘Worse And Worse’ but will defect with probability
of ‘current turn / total no. of turns’.


	Names:

	
	Knowledgeable Worse and Worse: Original name by Adam Pohl









	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.worse_and_worse.WorseAndWorse[source]

	Defects with probability of ‘current turn / 1000’. Therefore
it is more and more likely to defect as the round goes on.

Source code available at the download tab of [Prison1998]


	Names:

	
	Worse and Worse: [Prison1998]









	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.worse_and_worse.WorseAndWorse2[source]

	Plays as tit for tat during the first 20 moves.
Then defects with probability (current turn - 20) / current turn.
Therefore it is more and more likely to defect as the round goes on.


	Names:

	
	Worse and Worse 2: [Prison1998]









	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.worse_and_worse.WorseAndWorse3[source]

	Cooperates in the first turn.
Then defects with probability no. of opponent defects / (current turn - 1).
Therefore it is more likely to defect when the opponent defects for a larger
proportion of the turns.


	Names:

	
	Worse and Worse 3: [Prison1998]









	
strategy(opponent: axelrod.player.Player) → axelrod.action.Action[source]

	This is a placeholder strategy.










	
class axelrod.strategies.zero_determinant.LRPlayer(phi: float = 0.2, s: float = 0.1, l: float = 1)[source]

	Abstraction for Linear Relation players. These players enforce a linear
difference in stationary payoffs \(s (S_{xy} - l) = S_{yx} - l.\)

The parameter \(s\) is called the slope and the parameter \(l\) the
baseline payoff. For extortionate strategies, the extortion factor
\(\chi\) is the inverse of the slope \(s\).

For the standard prisoner’s dilemma where \(T > R > P > S\) and
\(R > (T + S) / 2 > P\), a pair \((l, s)\) is enforceable iff


\begin{eqnarray}
&P &<= l <= R \\
&s_{min} &= -\min\left( \frac{T - l}{l - S}, \frac{l - S}{T - l}\right) <= s <= 1
\end{eqnarray}
And also that there exists \(\phi\) such that


\begin{eqnarray}
   p_1 &= P(C|CC) &= 1 - \phi (1 - s)(R - l) \\
   p_2 &= P(C|CD) &= 1 - \phi (s(l - S) + (T - l)) \\
   p_3 &= P(C|DC) &= \phi ((l - S) + s(T - l)) \\
   p_4 &= P(C|DD) &= \phi (1 - s)(l - P)
\end{eqnarray}
These conditions also force \(\phi >= 0\). For a given pair \((l, s)\)
there may be multiple such \(\phi\).

This parameterization is Equation 14 in [Hilbe2013].
See Figure 2 of the article for a more in-depth explanation. Other game
parameters can alter the relations and bounds above.

Names:


	Linear Relation player: [Hilbe2013]





	
receive_match_attributes()[source]

	Parameters


	phi, s, l: floats

	Parameter used to compute the four-vector according to the
parameterization of the strategies below.














	
class axelrod.strategies.zero_determinant.ZDExtort2(phi: float = 0.1111111111111111, s: float = 0.5)[source]

	An Extortionate Zero Determinant Strategy with l=P.

Names:


	Extort-2: [Stewart2012]





	
receive_match_attributes()[source]

	Parameters


	phi, s, l: floats

	Parameter used to compute the four-vector according to the
parameterization of the strategies below.














	
class axelrod.strategies.zero_determinant.ZDExtort2v2(phi: float = 0.125, s: float = 0.5, l: float = 1)[source]

	An Extortionate Zero Determinant Strategy with l=1.

Names:


	EXTORT2: [Kuhn2017]









	
class axelrod.strategies.zero_determinant.ZDExtort3(phi: float = 0.11538461538461539, s: float = 0.3333333333333333, l: float = 1)[source]

	An extortionate strategy from Press and Dyson’s paper witn an extortion
factor of 3.

Names:


	ZDExtort3: Original name by Marc Harper


	Unnamed: [Press2012]









	
class axelrod.strategies.zero_determinant.ZDExtort4(phi: float = 0.23529411764705882, s: float = 0.25, l: float = 1)[source]

	An Extortionate Zero Determinant Strategy with l=1, s=1/4. TFT is the
other extreme (with l=3, s=1)

Names:


	Extort 4: Original name by Marc Harper









	
class axelrod.strategies.zero_determinant.ZDExtortion(phi: float = 0.2, s: float = 0.1, l: float = 1)[source]

	An example ZD Extortion player.

Names:


	ZDExtortion: [Roemheld2013]









	
class axelrod.strategies.zero_determinant.ZDGTFT2(phi: float = 0.25, s: float = 0.5)[source]

	A Generous Zero Determinant Strategy with l=R.

Names:


	ZDGTFT-2: [Stewart2012]





	
receive_match_attributes()[source]

	Parameters


	phi, s, l: floats

	Parameter used to compute the four-vector according to the
parameterization of the strategies below.














	
class axelrod.strategies.zero_determinant.ZDGen2(phi: float = 0.125, s: float = 0.5, l: float = 3)[source]

	A Generous Zero Determinant Strategy with l=3.

Names:


	GEN2: [Kuhn2017]









	
class axelrod.strategies.zero_determinant.ZDMischief(phi: float = 0.1, s: float = 0.0, l: float = 1)[source]

	An example ZD Mischief player.

Names:


	ZDMischief: [Roemheld2013]









	
class axelrod.strategies.zero_determinant.ZDSet2(phi: float = 0.25, s: float = 0.0, l: float = 2)[source]

	A Generous Zero Determinant Strategy with l=2.

Names:


	SET2: [Kuhn2017]
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Glossary

There are a variety of terms used in the documentation and throughout the
library. Here is an overview:


An action

An action is either C or D.
You can access these actions as follows but should not really have a reason to:

>>> import axelrod as axl
>>> axl.Action.C
C
>>> axl.Action.D
D







A play

A play is a single player choosing an action.
In terms of code this is equivalent to:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> C = p1.strategy(p2)  # This constitutes two 'plays' (p1 plays and p2 plays).
>>> D = p2.strategy(p1)  # This constitutes two 'plays' (p1 plays and p2 plays).







A turn

A turn is a 1 shot interaction between two players. It is in effect a
composition of two plays.

Each turn has four possible outcomes of a play: (C, C), (C, D),
(D, C), or (D, D).



A match

A match is a consecutive number of turns. The default number of turns
used in the tournament is 200. Here is a single match between two players over
3 turns:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> match = axl.Match((p1, p2), turns=3)
>>> result = match.play()
>>> result
[(C, D), (C, D), (C, D)]
>>> p1.history, p2.history
([C, C, C], [D, D, D])







A win

A win is attributed to the player who has the higher total score at the end
of a match. For the example above, Defector would win that match.



A strategy

A strategy is a set of instructions that dictate how to play given one’s own
strategy and the strategy of an opponent. In the library these correspond to the
strategy classes: TitForTat, Grudger, Cooperator etc…

When appropriate to do so this will be used interchangeable with A player.



A player

A player is a single agent using a given strategy. Players are the
participants of tournament, usually they each represent one strategy but of
course you can have multiple players choosing the same strategy. In the library
these correspond to __instances__ of classes:

>>> p1, p2 = axl.Cooperator(), axl.Defector()
>>> p1
Cooperator
>>> p2
Defector





When appropriate to do so this will be used interchangeable with A strategy.



A round robin

A round robin is the set of all potential (order invariant) matches between
a given collection of players.



A tournament

A tournament is a repetition of round robins so as to smooth out stochastic effects.



Noise

A match or tournament can be played with noise: this is the probability that
indicates the chance of an action dictated by a strategy being swapped.
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Part of the team

If you’re reading this you’re probably interested in contributing to and/or
using the Axelrod library! Firstly: thank you and welcome!

We are proud of the library and the environment that surrounds it. A primary
goal of the project is to cultivate an open and welcoming community, considerate
and respectful to newcomers to python and game theory.

The Axelrod library has been a first contribution to open source software for
many, and this is in large part due to the fact that we all aim to help and
encourage all levels of contribution. If you’re a beginner, that’s awesome!
You’re very welcome and don’t hesitate to ask for help.

With regards to any contribution, please do not feel the need to wait until
your contribution is perfectly polished and complete: we’re happy to offer
early feedback, help with git, and anything else that you need to have a
positive experience.

If you are using the library for your own work and there’s anything in the
documentation that is unclear: we want to know so that we can fix it. We also
want to help so please don’t hesitate to get in touch.




          

      

      

    

  

    
      
          
            
  
Communication

There are various ways of communicating with the team:


	Gitter: a web based chat client, you can talk directly to the users and
maintainers of the library. [https://gitter.im/Axelrod-Python/Axelrod]


	Irc: we have an irc channel. It’s #axelrod-python on freenode.


	Email forum. [https://groups.google.com/forum/#!forum/axelrod-python]


	Issues: you are also very welcome to open an issue on
github [https://github.com/Axelrod-Python/Axelrod/issues]


	Twitter. [https://twitter.com/AxelrodPython] This account periodically
tweets out random match and tournament results; you’re welcome to get in
touch through twitter as well.







          

      

      

    

  

    
      
          
            
  
Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.



Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a professional setting






Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.



Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.



Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting a member of the core team. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.



Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4





          

      

      

    

  

    
      
          
            
  
Citing the library

We would be delighted if anyone wanted to use and/or reference this library for
their own research.

If you do please let us know and reference the library: as described in the
CITATION.rst file on the library
repository [https://github.com/Axelrod-Python/Axelrod/blob/master/CITATION.rst].




          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a
   


   
     		 	

     		
       a	

     
       	[image: -]
       	
       axelrod	
       

     
       	
       	   
       axelrod.strategies.adaptive	
       

     
       	
       	   
       axelrod.strategies.adaptor	
       

     
       	
       	   
       axelrod.strategies.alternator	
       

     
       	
       	   
       axelrod.strategies.ann	
       

     
       	
       	   
       axelrod.strategies.apavlov	
       

     
       	
       	   
       axelrod.strategies.appeaser	
       

     
       	
       	   
       axelrod.strategies.averagecopier	
       

     
       	
       	   
       axelrod.strategies.axelrod_first	
       

     
       	
       	   
       axelrod.strategies.axelrod_second	
       

     
       	
       	   
       axelrod.strategies.backstabber	
       

     
       	
       	   
       axelrod.strategies.better_and_better	
       

     
       	
       	   
       axelrod.strategies.bush_mosteller	
       

     
       	
       	   
       axelrod.strategies.calculator	
       

     
       	
       	   
       axelrod.strategies.cooperator	
       

     
       	
       	   
       axelrod.strategies.cycler	
       

     
       	
       	   
       axelrod.strategies.darwin	
       

     
       	
       	   
       axelrod.strategies.dbs	
       

     
       	
       	   
       axelrod.strategies.defector	
       

     
       	
       	   
       axelrod.strategies.doubler	
       

     
       	
       	   
       axelrod.strategies.finite_state_machines	
       

     
       	
       	   
       axelrod.strategies.forgiver	
       

     
       	
       	   
       axelrod.strategies.gambler	
       

     
       	
       	   
       axelrod.strategies.geller	
       

     
       	
       	   
       axelrod.strategies.gobymajority	
       

     
       	
       	   
       axelrod.strategies.gradualkiller	
       

     
       	
       	   
       axelrod.strategies.grudger	
       

     
       	
       	   
       axelrod.strategies.grumpy	
       

     
       	
       	   
       axelrod.strategies.handshake	
       

     
       	
       	   
       axelrod.strategies.hmm	
       

     
       	
       	   
       axelrod.strategies.hunter	
       

     
       	
       	   
       axelrod.strategies.inverse	
       

     
       	
       	   
       axelrod.strategies.lookerup	
       

     
       	
       	   
       axelrod.strategies.mathematicalconstants	
       

     
       	
       	   
       axelrod.strategies.memoryone	
       

     
       	
       	   
       axelrod.strategies.memorytwo	
       

     
       	
       	   
       axelrod.strategies.meta	
       

     
       	
       	   
       axelrod.strategies.mindcontrol	
       

     
       	
       	   
       axelrod.strategies.mindreader	
       

     
       	
       	   
       axelrod.strategies.mutual	
       

     
       	
       	   
       axelrod.strategies.negation	
       

     
       	
       	   
       axelrod.strategies.oncebitten	
       

     
       	
       	   
       axelrod.strategies.prober	
       

     
       	
       	   
       axelrod.strategies.punisher	
       

     
       	
       	   
       axelrod.strategies.qlearner	
       

     
       	
       	   
       axelrod.strategies.rand	
       

     
       	
       	   
       axelrod.strategies.resurrection	
       

     
       	
       	   
       axelrod.strategies.retaliate	
       

     
       	
       	   
       axelrod.strategies.revised_downing	
       

     
       	
       	   
       axelrod.strategies.selfsteem	
       

     
       	
       	   
       axelrod.strategies.sequence_player	
       

     
       	
       	   
       axelrod.strategies.shortmem	
       

     
       	
       	   
       axelrod.strategies.stalker	
       

     
       	
       	   
       axelrod.strategies.titfortat	
       

     
       	
       	   
       axelrod.strategies.verybad	
       

     
       	
       	   
       axelrod.strategies.worse_and_worse	
       

     
       	
       	   
       axelrod.strategies.zero_determinant	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


A


  	
      	AbstractAdaptor (class in axelrod.strategies.adaptor)


      	activate() (in module axelrod.strategies.ann)


      	Adaptive (class in axelrod.strategies.adaptive)


      	AdaptiveTitForTat (class in axelrod.strategies.titfortat)


      	AdaptorBrief (class in axelrod.strategies.adaptor)


      	AdaptorLong (class in axelrod.strategies.adaptor)


      	Aggravater (class in axelrod.strategies.grudger)


      	Alexei (class in axelrod.strategies.titfortat)


      	ALLCorALLD (class in axelrod.strategies.memoryone)


      	Alternator (class in axelrod.strategies.alternator)


      	AlternatorHunter (class in axelrod.strategies.hunter)


      	ANN (class in axelrod.strategies.ann)


      	AntiCycler (class in axelrod.strategies.cycler)


      	AntiTitForTat (class in axelrod.strategies.titfortat)


      	AON2 (class in axelrod.strategies.memorytwo)


      	APavlov2006 (class in axelrod.strategies.apavlov)


      	APavlov2011 (class in axelrod.strategies.apavlov)


      	Appeaser (class in axelrod.strategies.appeaser)


      	ArrogantQLearner (class in axelrod.strategies.qlearner)


      	AverageCopier (class in axelrod.strategies.averagecopier)


      	axelrod.strategies.adaptive (module)


      	axelrod.strategies.adaptor (module)


      	axelrod.strategies.alternator (module)


      	axelrod.strategies.ann (module)


      	axelrod.strategies.apavlov (module)


      	axelrod.strategies.appeaser (module)


      	axelrod.strategies.averagecopier (module)


      	axelrod.strategies.axelrod_first (module)


      	axelrod.strategies.axelrod_second (module)


      	axelrod.strategies.backstabber (module)


      	axelrod.strategies.better_and_better (module)


      	axelrod.strategies.bush_mosteller (module)


      	axelrod.strategies.calculator (module)


      	axelrod.strategies.cooperator (module)


      	axelrod.strategies.cycler (module)


      	axelrod.strategies.darwin (module)


      	axelrod.strategies.dbs (module)


      	axelrod.strategies.defector (module)


  

  	
      	axelrod.strategies.doubler (module)


      	axelrod.strategies.finite_state_machines (module)


      	axelrod.strategies.forgiver (module)


      	axelrod.strategies.gambler (module)


      	axelrod.strategies.geller (module)


      	axelrod.strategies.gobymajority (module)


      	axelrod.strategies.gradualkiller (module)


      	axelrod.strategies.grudger (module)


      	axelrod.strategies.grumpy (module)


      	axelrod.strategies.handshake (module)


      	axelrod.strategies.hmm (module)


      	axelrod.strategies.hunter (module)


      	axelrod.strategies.inverse (module)


      	axelrod.strategies.lookerup (module)


      	axelrod.strategies.mathematicalconstants (module)


      	axelrod.strategies.memoryone (module)


      	axelrod.strategies.memorytwo (module)


      	axelrod.strategies.meta (module)


      	axelrod.strategies.mindcontrol (module)


      	axelrod.strategies.mindreader (module)


      	axelrod.strategies.mutual (module)


      	axelrod.strategies.negation (module)


      	axelrod.strategies.oncebitten (module)


      	axelrod.strategies.prober (module)


      	axelrod.strategies.punisher (module)


      	axelrod.strategies.qlearner (module)


      	axelrod.strategies.rand (module)


      	axelrod.strategies.resurrection (module)


      	axelrod.strategies.retaliate (module)


      	axelrod.strategies.revised_downing (module)


      	axelrod.strategies.selfsteem (module)


      	axelrod.strategies.sequence_player (module)


      	axelrod.strategies.shortmem (module)


      	axelrod.strategies.stalker (module)


      	axelrod.strategies.titfortat (module)


      	axelrod.strategies.verybad (module)


      	axelrod.strategies.worse_and_worse (module)


      	axelrod.strategies.zero_determinant (module)


  





B


  	
      	BackStabber (class in axelrod.strategies.backstabber)


      	BetterAndBetter (class in axelrod.strategies.better_and_better)


  

  	
      	Bully (class in axelrod.strategies.titfortat)


      	BushMosteller (class in axelrod.strategies.bush_mosteller)


  





C


  	
      	calculate_chi_squared() (axelrod.strategies.axelrod_second.SecondByHarrington method)


      	Calculator (class in axelrod.strategies.calculator)


      	CautiousQLearner (class in axelrod.strategies.qlearner)


      	CollectiveStrategy (class in axelrod.strategies.prober)


      	compute_features() (in module axelrod.strategies.ann)


      	compute_prob_rule() (axelrod.strategies.dbs.DBS method)


      	ContriteTitForTat (class in axelrod.strategies.titfortat)


      	Cooperator (class in axelrod.strategies.cooperator)


      	CooperatorHunter (class in axelrod.strategies.hunter)


      	CotoDeRatio (class in axelrod.strategies.mathematicalconstants)


      	create_lookup_table_keys() (in module axelrod.strategies.lookerup)


      	create_policy() (in module axelrod.strategies.dbs)


      	create_vector_bounds() (axelrod.strategies.finite_state_machines.EvolvableFSMPlayer method)

      
        	(axelrod.strategies.gambler.EvolvableGambler method)


        	(axelrod.strategies.hmm.EvolvableHMMPlayer method)


      


  

  	
      	crossover() (axelrod.strategies.ann.EvolvableANN method)

      
        	(axelrod.strategies.cycler.EvolvableCycler method)


        	(axelrod.strategies.finite_state_machines.EvolvableFSMPlayer method)


        	(axelrod.strategies.hmm.EvolvableHMMPlayer method)


        	(axelrod.strategies.lookerup.EvolvableLookerUp method)


      


      	CycleHunter (class in axelrod.strategies.hunter)


      	Cycler (class in axelrod.strategies.cycler)


      	CyclerCCCCCD (class in axelrod.strategies.cycler)


      	CyclerCCCD (class in axelrod.strategies.cycler)


      	CyclerCCCDCD (class in axelrod.strategies.cycler)


      	CyclerCCD (class in axelrod.strategies.cycler)


      	CyclerDC (class in axelrod.strategies.cycler)


      	CyclerDDC (class in axelrod.strategies.cycler)


  





D


  	
      	Darwin (class in axelrod.strategies.darwin)


      	DBS (class in axelrod.strategies.dbs)


      	Defector (class in axelrod.strategies.defector)


      	DefectorHunter (class in axelrod.strategies.hunter)


      	DelayedAON1 (class in axelrod.strategies.memorytwo)


      	Desperate (class in axelrod.strategies.mutual)


      	detect_parity_streak() (axelrod.strategies.axelrod_second.SecondByHarrington method)


      	detect_random() (axelrod.strategies.axelrod_second.SecondByHarrington method)


  

  	
      	detect_streak() (axelrod.strategies.axelrod_second.SecondByHarrington method)


      	Detective (class in axelrod.strategies.prober)


      	DeterministicNode (class in axelrod.strategies.dbs)


      	display() (axelrod.strategies.lookerup.LookupTable method)


      	DoubleCrosser (class in axelrod.strategies.backstabber)


      	Doubler (class in axelrod.strategies.doubler)


      	DoubleResurrection (class in axelrod.strategies.resurrection)


      	DynamicTwoTitsForTat (class in axelrod.strategies.titfortat)


  





E


  	
      	e (class in axelrod.strategies.mathematicalconstants)


      	EasyGo (class in axelrod.strategies.grudger)


      	EugineNier (class in axelrod.strategies.titfortat)


      	EventualCycleHunter (class in axelrod.strategies.hunter)


      	EvolvableANN (class in axelrod.strategies.ann)


      	EvolvableCycler (class in axelrod.strategies.cycler)


      	EvolvableFSMPlayer (class in axelrod.strategies.finite_state_machines)


      	EvolvableGambler (class in axelrod.strategies.gambler)


      	EvolvableHMMPlayer (class in axelrod.strategies.hmm)


  

  	
      	EvolvableLookerUp (class in axelrod.strategies.lookerup)


      	EvolvedANN (class in axelrod.strategies.ann)


      	EvolvedANN5 (class in axelrod.strategies.ann)


      	EvolvedANNNoise05 (class in axelrod.strategies.ann)


      	EvolvedFSM16 (class in axelrod.strategies.finite_state_machines)


      	EvolvedFSM16Noise05 (class in axelrod.strategies.finite_state_machines)


      	EvolvedFSM4 (class in axelrod.strategies.finite_state_machines)


      	EvolvedHMM5 (class in axelrod.strategies.hmm)


      	EvolvedLookerUp1_1_1 (class in axelrod.strategies.lookerup)


      	EvolvedLookerUp2_2_2 (class in axelrod.strategies.lookerup)


  





F


  	
      	find_reward() (axelrod.strategies.qlearner.RiskyQLearner method)


      	find_state() (axelrod.strategies.qlearner.RiskyQLearner method)


      	FirmButFair (class in axelrod.strategies.memoryone)


      	FirstByAnonymous (class in axelrod.strategies.axelrod_first)


      	FirstByDavis (class in axelrod.strategies.axelrod_first)


      	FirstByDowning (class in axelrod.strategies.axelrod_first)


      	FirstByFeld (class in axelrod.strategies.axelrod_first)


      	FirstByGraaskamp (class in axelrod.strategies.axelrod_first)


      	FirstByGrofman (class in axelrod.strategies.axelrod_first)


      	FirstByJoss (class in axelrod.strategies.axelrod_first)


      	FirstByNydegger (class in axelrod.strategies.axelrod_first)


      	FirstByShubik (class in axelrod.strategies.axelrod_first)


      	FirstBySteinAndRapoport (class in axelrod.strategies.axelrod_first)


      	FirstByTidemanAndChieruzzi (class in axelrod.strategies.axelrod_first)


  

  	
      	FirstByTullock (class in axelrod.strategies.axelrod_first)


      	foil_strategy_inspection() (axelrod.strategies.darwin.Darwin static method)

      
        	(axelrod.strategies.geller.Geller method)


        	(axelrod.strategies.geller.GellerCooperator static method)


        	(axelrod.strategies.geller.GellerDefector static method)


        	(axelrod.strategies.mindreader.MindReader static method)


        	(axelrod.strategies.mindreader.MirrorMindReader static method)


      


      	FoolMeOnce (class in axelrod.strategies.oncebitten)


      	ForgetfulFoolMeOnce (class in axelrod.strategies.oncebitten)


      	ForgetfulGrudger (class in axelrod.strategies.grudger)


      	Forgiver (class in axelrod.strategies.forgiver)


      	ForgivingTitForTat (class in axelrod.strategies.forgiver)


      	Fortress3 (class in axelrod.strategies.finite_state_machines)


      	Fortress4 (class in axelrod.strategies.finite_state_machines)


      	FSMPlayer (class in axelrod.strategies.finite_state_machines)


  





G


  	
      	gain_loss_translate() (axelrod.strategies.meta.MemoryDecay method)


      	Gambler (class in axelrod.strategies.gambler)


      	Geller (class in axelrod.strategies.geller)


      	GellerCooperator (class in axelrod.strategies.geller)


      	GellerDefector (class in axelrod.strategies.geller)


      	GeneralSoftGrudger (class in axelrod.strategies.grudger)


      	get_last_n_plays() (in module axelrod.strategies.lookerup)


      	get_siblings() (axelrod.strategies.dbs.DeterministicNode method)

      
        	(axelrod.strategies.dbs.StochasticNode method)


      


      	GoByMajority (class in axelrod.strategies.gobymajority)


  

  	
      	GoByMajority10 (class in axelrod.strategies.gobymajority)


      	GoByMajority20 (class in axelrod.strategies.gobymajority)


      	GoByMajority40 (class in axelrod.strategies.gobymajority)


      	GoByMajority5 (class in axelrod.strategies.gobymajority)


      	Golden (class in axelrod.strategies.mathematicalconstants)


      	Gradual (class in axelrod.strategies.titfortat)


      	GradualKiller (class in axelrod.strategies.gradualkiller)


      	Grudger (class in axelrod.strategies.grudger)


      	GrudgerAlternator (class in axelrod.strategies.grudger)


      	Grumpy (class in axelrod.strategies.grumpy)


      	GTFT (class in axelrod.strategies.memoryone)


  





H


  	
      	Handshake (class in axelrod.strategies.handshake)


      	HardGoByMajority (class in axelrod.strategies.gobymajority)


      	HardGoByMajority10 (class in axelrod.strategies.gobymajority)


      	HardGoByMajority20 (class in axelrod.strategies.gobymajority)


      	HardGoByMajority40 (class in axelrod.strategies.gobymajority)


      	HardGoByMajority5 (class in axelrod.strategies.gobymajority)


  

  	
      	HardProber (class in axelrod.strategies.prober)


      	HardTitFor2Tats (class in axelrod.strategies.titfortat)


      	HardTitForTat (class in axelrod.strategies.titfortat)


      	HesitantQLearner (class in axelrod.strategies.qlearner)


      	HMMPlayer (class in axelrod.strategies.hmm)


      	Hopeless (class in axelrod.strategies.mutual)


  





I


  	
      	index_strategy() (axelrod.strategies.meta.MetaMixer method)


      	Inverse (class in axelrod.strategies.inverse)


      	InversePunisher (class in axelrod.strategies.punisher)


      	is_stochastic() (axelrod.strategies.dbs.DeterministicNode method)

      
        	(axelrod.strategies.dbs.StochasticNode method)


        	(axelrod.strategies.hmm.HMMPlayer method)


      


  

  	
      	is_stochastic_matrix() (in module axelrod.strategies.hmm)


      	is_well_formed() (axelrod.strategies.hmm.SimpleHMM method)


  





K


  	
      	KnowledgeableWorseAndWorse (class in axelrod.strategies.worse_and_worse)


  





L


  	
      	LevelPunisher (class in axelrod.strategies.punisher)


      	LimitedRetaliate (class in axelrod.strategies.retaliate)


      	LimitedRetaliate2 (class in axelrod.strategies.retaliate)


      	LimitedRetaliate3 (class in axelrod.strategies.retaliate)


  

  	
      	LookerUp (class in axelrod.strategies.lookerup)


      	lookup_table_display() (axelrod.strategies.lookerup.LookerUp method)


      	LookupTable (class in axelrod.strategies.lookerup)


      	LRPlayer (class in axelrod.strategies.zero_determinant)


  





M


  	
      	make_keys_into_plays() (in module axelrod.strategies.lookerup)


      	MathConstantHunter (class in axelrod.strategies.hunter)


      	MEM2 (class in axelrod.strategies.memorytwo)


      	memory_alter() (axelrod.strategies.meta.MemoryDecay method)


      	memory_delete() (axelrod.strategies.meta.MemoryDecay method)


      	MemoryDecay (class in axelrod.strategies.meta)


      	MemoryOnePlayer (class in axelrod.strategies.memoryone)


      	MemoryTwoPlayer (class in axelrod.strategies.memorytwo)


      	meta_strategy() (axelrod.strategies.meta.MemoryDecay method)

      
        	(axelrod.strategies.meta.MetaHunter static method)


        	(axelrod.strategies.meta.MetaHunterAggressive static method)


        	(axelrod.strategies.meta.MetaMajority static method)


        	(axelrod.strategies.meta.MetaMinority static method)


        	(axelrod.strategies.meta.MetaMixer method)


        	(axelrod.strategies.meta.MetaPlayer method)


        	(axelrod.strategies.meta.MetaWinner method)


        	(axelrod.strategies.meta.MetaWinnerEnsemble method)


        	(axelrod.strategies.sequence_player.SequencePlayer static method)


        	(axelrod.strategies.sequence_player.ThueMorseInverse static method)


      


      	MetaHunter (class in axelrod.strategies.meta)


      	MetaHunterAggressive (class in axelrod.strategies.meta)


      	MetaMajority (class in axelrod.strategies.meta)


      	MetaMajorityFiniteMemory (class in axelrod.strategies.meta)


      	MetaMajorityLongMemory (class in axelrod.strategies.meta)


      	MetaMajorityMemoryOne (class in axelrod.strategies.meta)


      	MetaMinority (class in axelrod.strategies.meta)


  

  	
      	MetaMixer (class in axelrod.strategies.meta)


      	MetaPlayer (class in axelrod.strategies.meta)


      	MetaWinner (class in axelrod.strategies.meta)


      	MetaWinnerDeterministic (class in axelrod.strategies.meta)


      	MetaWinnerEnsemble (class in axelrod.strategies.meta)


      	MetaWinnerFiniteMemory (class in axelrod.strategies.meta)


      	MetaWinnerLongMemory (class in axelrod.strategies.meta)


      	MetaWinnerMemoryOne (class in axelrod.strategies.meta)


      	MetaWinnerStochastic (class in axelrod.strategies.meta)


      	Michaelos (class in axelrod.strategies.titfortat)


      	MindBender (class in axelrod.strategies.mindcontrol)


      	MindController (class in axelrod.strategies.mindcontrol)


      	MindReader (class in axelrod.strategies.mindreader)


      	MindWarper (class in axelrod.strategies.mindcontrol)


      	minimax_tree_search() (in module axelrod.strategies.dbs)


      	MirrorMindReader (class in axelrod.strategies.mindreader)


      	move() (axelrod.strategies.finite_state_machines.SimpleFSM method)

      
        	(axelrod.strategies.hmm.SimpleHMM method)


      


      	move_gen() (in module axelrod.strategies.dbs)


      	mutate() (axelrod.strategies.ann.EvolvableANN method)

      
        	(axelrod.strategies.cycler.EvolvableCycler method)


        	(axelrod.strategies.darwin.Darwin method)


        	(axelrod.strategies.finite_state_machines.EvolvableFSMPlayer method)


        	(axelrod.strategies.hmm.EvolvableHMMPlayer method)


        	(axelrod.strategies.lookerup.EvolvableLookerUp method)


      


      	mutate_row() (in module axelrod.strategies.hmm)


  





N


  	
      	NaiveProber (class in axelrod.strategies.prober)


      	Negation (class in axelrod.strategies.negation)


      	NiceAverageCopier (class in axelrod.strategies.averagecopier)


      	NiceMetaWinner (class in axelrod.strategies.meta)


      	NiceMetaWinnerEnsemble (class in axelrod.strategies.meta)


      	NMWEDeterministic (class in axelrod.strategies.meta)


      	NMWEFiniteMemory (class in axelrod.strategies.meta)


  

  	
      	NMWELongMemory (class in axelrod.strategies.meta)


      	NMWEMemoryOne (class in axelrod.strategies.meta)


      	NMWEStochastic (class in axelrod.strategies.meta)


      	Node (class in axelrod.strategies.dbs)


      	normalize_transitions() (axelrod.strategies.finite_state_machines.EvolvableFSMPlayer class method)


      	NTitsForMTats (class in axelrod.strategies.titfortat)


      	num_states() (axelrod.strategies.finite_state_machines.SimpleFSM method)


  





O


  	
      	OmegaTFT (class in axelrod.strategies.titfortat)


      	OnceBitten (class in axelrod.strategies.oncebitten)


      	op_openings (axelrod.strategies.lookerup.Plays attribute)


      	op_plays (axelrod.strategies.lookerup.Plays attribute)


      	OppositeGrudger (class in axelrod.strategies.grudger)


      	original_class (axelrod.strategies.axelrod_first.FirstBySteinAndRapoport attribute)

      
        	(axelrod.strategies.axelrod_first.FirstByTidemanAndChieruzzi attribute)


        	(axelrod.strategies.backstabber.BackStabber attribute)


        	(axelrod.strategies.backstabber.DoubleCrosser attribute)


        	(axelrod.strategies.gradualkiller.GradualKiller attribute)


        	(axelrod.strategies.meta.NiceMetaWinner attribute)


        	(axelrod.strategies.meta.NiceMetaWinnerEnsemble attribute)


        	(axelrod.strategies.stalker.Stalker attribute)


        	(axelrod.strategies.titfortat.Alexei attribute)


        	(axelrod.strategies.titfortat.ContriteTitForTat attribute)


        	(axelrod.strategies.titfortat.EugineNier attribute)


        	(axelrod.strategies.titfortat.Michaelos attribute)


      


  

  	
      	OriginalGradual (class in axelrod.strategies.titfortat)


  





P


  	
      	perform_q_learning() (axelrod.strategies.qlearner.RiskyQLearner method)


      	Pi (class in axelrod.strategies.mathematicalconstants)


      	Plays (class in axelrod.strategies.lookerup)


      	Predator (class in axelrod.strategies.finite_state_machines)


      	Prober (class in axelrod.strategies.prober)


      	Prober2 (class in axelrod.strategies.prober)


      	Prober3 (class in axelrod.strategies.prober)


  

  	
      	Prober4 (class in axelrod.strategies.prober)


      	ProtectedMindReader (class in axelrod.strategies.mindreader)


      	PSOGambler1_1_1 (class in axelrod.strategies.gambler)


      	PSOGambler2_2_2 (class in axelrod.strategies.gambler)


      	PSOGambler2_2_2_Noise05 (class in axelrod.strategies.gambler)


      	PSOGamblerMem1 (class in axelrod.strategies.gambler)


      	Pun1 (class in axelrod.strategies.finite_state_machines)


      	Punisher (class in axelrod.strategies.punisher)


  





R


  	
      	Raider (class in axelrod.strategies.finite_state_machines)


      	Random (class in axelrod.strategies.rand)


      	RandomHunter (class in axelrod.strategies.hunter)


      	RandomTitForTat (class in axelrod.strategies.titfortat)


      	ReactivePlayer (class in axelrod.strategies.memoryone)


      	receive_match_attributes() (axelrod.strategies.zero_determinant.LRPlayer method)

      
        	(axelrod.strategies.zero_determinant.ZDExtort2 method)


        	(axelrod.strategies.zero_determinant.ZDGTFT2 method)


      


      	receive_vector() (axelrod.strategies.finite_state_machines.EvolvableFSMPlayer method)

      
        	(axelrod.strategies.gambler.EvolvableGambler method)


        	(axelrod.strategies.hmm.EvolvableHMMPlayer method)


      


  

  	
      	RemorsefulProber (class in axelrod.strategies.prober)


      	reset() (axelrod.strategies.darwin.Darwin method)


      	reset_genome() (axelrod.strategies.darwin.Darwin static method)


      	Resurrection (class in axelrod.strategies.resurrection)


      	Retaliate (class in axelrod.strategies.retaliate)


      	Retaliate2 (class in axelrod.strategies.retaliate)


      	Retaliate3 (class in axelrod.strategies.retaliate)


      	RevisedDowning (class in axelrod.strategies.revised_downing)


      	Ripoff (class in axelrod.strategies.finite_state_machines)


      	RiskyQLearner (class in axelrod.strategies.qlearner)


  





S


  	
      	score_history() (axelrod.strategies.axelrod_first.FirstByNydegger static method)


      	SecondByAppold (class in axelrod.strategies.axelrod_second)


      	SecondByBlack (class in axelrod.strategies.axelrod_second)


      	SecondByBorufsen (class in axelrod.strategies.axelrod_second)


      	SecondByCave (class in axelrod.strategies.axelrod_second)


      	SecondByChampion (class in axelrod.strategies.axelrod_second)


      	SecondByColbert (class in axelrod.strategies.axelrod_second)


      	SecondByEatherley (class in axelrod.strategies.axelrod_second)


      	SecondByGetzler (class in axelrod.strategies.axelrod_second)


      	SecondByGladstein (class in axelrod.strategies.axelrod_second)


      	SecondByGraaskampKatzen (class in axelrod.strategies.axelrod_second)


      	SecondByGrofman (class in axelrod.strategies.axelrod_second)


      	SecondByHarrington (class in axelrod.strategies.axelrod_second)


      	SecondByKluepfel (class in axelrod.strategies.axelrod_second)


      	SecondByLeyvraz (class in axelrod.strategies.axelrod_second)


      	SecondByMikkelson (class in axelrod.strategies.axelrod_second)


      	SecondByRichardHufford (class in axelrod.strategies.axelrod_second)


      	SecondByRowsam (class in axelrod.strategies.axelrod_second)


      	SecondByTester (class in axelrod.strategies.axelrod_second)


      	SecondByTidemanAndChieruzzi (class in axelrod.strategies.axelrod_second)


      	SecondByTranquilizer (class in axelrod.strategies.axelrod_second)


      	SecondByWeiner (class in axelrod.strategies.axelrod_second)


      	SecondByWhite (class in axelrod.strategies.axelrod_second)


      	SecondByWmAdams (class in axelrod.strategies.axelrod_second)


      	SecondByYamachi (class in axelrod.strategies.axelrod_second)


      	select_action() (axelrod.strategies.qlearner.RiskyQLearner method)


      	self_plays (axelrod.strategies.lookerup.Plays attribute)


      	SelfSteem (class in axelrod.strategies.selfsteem)


      	SequencePlayer (class in axelrod.strategies.sequence_player)


      	set_cycle() (axelrod.strategies.cycler.Cycler method)


      	set_seed() (axelrod.strategies.calculator.Calculator method)

      
        	(axelrod.strategies.hmm.HMMPlayer method)


        	(axelrod.strategies.meta.MetaPlayer method)


      


      	ShortMem (class in axelrod.strategies.shortmem)


      	should_demote() (axelrod.strategies.dbs.DBS method)


      	should_promote() (axelrod.strategies.dbs.DBS method)


      	SimpleFSM (class in axelrod.strategies.finite_state_machines)


      	SimpleHMM (class in axelrod.strategies.hmm)


      	SlowTitForTwoTats2 (class in axelrod.strategies.titfortat)


      	SneakyTitForTat (class in axelrod.strategies.titfortat)


      	SoftGrudger (class in axelrod.strategies.grudger)


      	SoftJoss (class in axelrod.strategies.memoryone)


      	SolutionB1 (class in axelrod.strategies.finite_state_machines)


      	SolutionB5 (class in axelrod.strategies.finite_state_machines)


      	SpitefulCC (class in axelrod.strategies.grudger)


      	SpitefulTitForTat (class in axelrod.strategies.titfortat)


      	split_weights() (in module axelrod.strategies.ann)


      	Stalker (class in axelrod.strategies.stalker)


      	stimulus_update() (axelrod.strategies.bush_mosteller.BushMosteller method)


      	StochasticCooperator (class in axelrod.strategies.memoryone)


      	StochasticNode (class in axelrod.strategies.dbs)


      	StochasticWSLS (class in axelrod.strategies.memoryone)


      	strategy() (axelrod.strategies.adaptive.Adaptive method)

      
        	(axelrod.strategies.adaptor.AbstractAdaptor method)


        	(axelrod.strategies.alternator.Alternator method)


        	(axelrod.strategies.ann.ANN method)


        	(axelrod.strategies.apavlov.APavlov2006 method)


        	(axelrod.strategies.apavlov.APavlov2011 method)


        	(axelrod.strategies.appeaser.Appeaser method)


        	(axelrod.strategies.averagecopier.AverageCopier method)


        	(axelrod.strategies.averagecopier.NiceAverageCopier method)


        	(axelrod.strategies.axelrod_first.FirstByAnonymous method)


        	(axelrod.strategies.axelrod_first.FirstByDavis method)


        	(axelrod.strategies.axelrod_first.FirstByDowning method)


        	(axelrod.strategies.axelrod_first.FirstByFeld method)


        	(axelrod.strategies.axelrod_first.FirstByGraaskamp method)


        	(axelrod.strategies.axelrod_first.FirstByGrofman method)


        	(axelrod.strategies.axelrod_first.FirstByNydegger method)


        	(axelrod.strategies.axelrod_first.FirstByShubik method)


        	(axelrod.strategies.axelrod_first.FirstByTullock method)


        	(axelrod.strategies.axelrod_second.SecondByAppold method)


        	(axelrod.strategies.axelrod_second.SecondByBlack method)


        	(axelrod.strategies.axelrod_second.SecondByBorufsen method)


        	(axelrod.strategies.axelrod_second.SecondByCave method)


        	(axelrod.strategies.axelrod_second.SecondByChampion method)


        	(axelrod.strategies.axelrod_second.SecondByEatherley method)


        	(axelrod.strategies.axelrod_second.SecondByGetzler method)


        	(axelrod.strategies.axelrod_second.SecondByGladstein method)


        	(axelrod.strategies.axelrod_second.SecondByGraaskampKatzen method)


        	(axelrod.strategies.axelrod_second.SecondByGrofman method)


        	(axelrod.strategies.axelrod_second.SecondByHarrington method)


        	(axelrod.strategies.axelrod_second.SecondByKluepfel method)


        	(axelrod.strategies.axelrod_second.SecondByLeyvraz method)


        	(axelrod.strategies.axelrod_second.SecondByMikkelson method)


        	(axelrod.strategies.axelrod_second.SecondByRichardHufford method)


        	(axelrod.strategies.axelrod_second.SecondByRowsam method)


        	(axelrod.strategies.axelrod_second.SecondByTester method)


        	(axelrod.strategies.axelrod_second.SecondByTidemanAndChieruzzi method)


        	(axelrod.strategies.axelrod_second.SecondByTranquilizer method)


        	(axelrod.strategies.axelrod_second.SecondByWeiner method)


        	(axelrod.strategies.axelrod_second.SecondByWhite method)


        	(axelrod.strategies.axelrod_second.SecondByWmAdams method)


        	(axelrod.strategies.axelrod_second.SecondByYamachi method)


        	(axelrod.strategies.better_and_better.BetterAndBetter method)


        	(axelrod.strategies.bush_mosteller.BushMosteller method)


        	(axelrod.strategies.calculator.Calculator method)


        	(axelrod.strategies.cooperator.Cooperator static method)


        	(axelrod.strategies.cooperator.TrickyCooperator method)


        	(axelrod.strategies.cycler.AntiCycler method)


        	(axelrod.strategies.cycler.Cycler method)


        	(axelrod.strategies.darwin.Darwin method)


        	(axelrod.strategies.dbs.DBS method)


        	(axelrod.strategies.defector.Defector static method)


        	(axelrod.strategies.defector.TrickyDefector method)


        	(axelrod.strategies.doubler.Doubler method)


        	(axelrod.strategies.finite_state_machines.FSMPlayer method)


        	(axelrod.strategies.forgiver.Forgiver method)


        	(axelrod.strategies.forgiver.ForgivingTitForTat method)


        	(axelrod.strategies.gambler.Gambler method)


        	(axelrod.strategies.geller.Geller method)


        	(axelrod.strategies.gobymajority.GoByMajority method)


        	(axelrod.strategies.grudger.Aggravater static method)


        	(axelrod.strategies.grudger.EasyGo static method)


        	(axelrod.strategies.grudger.ForgetfulGrudger method)


        	(axelrod.strategies.grudger.GeneralSoftGrudger method)


        	(axelrod.strategies.grudger.Grudger static method)


        	(axelrod.strategies.grudger.GrudgerAlternator method)


        	(axelrod.strategies.grudger.OppositeGrudger static method)


        	(axelrod.strategies.grudger.SoftGrudger method)


        	(axelrod.strategies.grudger.SpitefulCC static method)


        	(axelrod.strategies.grumpy.Grumpy method)


        	(axelrod.strategies.handshake.Handshake method)


        	(axelrod.strategies.hmm.HMMPlayer method)


        	(axelrod.strategies.hunter.AlternatorHunter method)


        	(axelrod.strategies.hunter.CooperatorHunter method)


        	(axelrod.strategies.hunter.CycleHunter method)


        	(axelrod.strategies.hunter.DefectorHunter method)


        	(axelrod.strategies.hunter.EventualCycleHunter method)


        	(axelrod.strategies.hunter.MathConstantHunter method)


        	(axelrod.strategies.hunter.RandomHunter method)


        	(axelrod.strategies.inverse.Inverse method)


        	(axelrod.strategies.lookerup.LookerUp method)


        	(axelrod.strategies.mathematicalconstants.CotoDeRatio method)


        	(axelrod.strategies.memoryone.ALLCorALLD method)


        	(axelrod.strategies.memoryone.MemoryOnePlayer method)


        	(axelrod.strategies.memoryone.WinStayLoseShift method)


        	(axelrod.strategies.memorytwo.MEM2 method)


        	(axelrod.strategies.memorytwo.MemoryTwoPlayer method)


        	(axelrod.strategies.meta.MetaPlayer method)


        	(axelrod.strategies.mindcontrol.MindBender static method)


        	(axelrod.strategies.mindcontrol.MindController static method)


        	(axelrod.strategies.mindcontrol.MindWarper static method)


        	(axelrod.strategies.mindreader.MindReader method)


        	(axelrod.strategies.mindreader.MirrorMindReader method)


        	(axelrod.strategies.mutual.Desperate method)


        	(axelrod.strategies.mutual.Hopeless method)


        	(axelrod.strategies.mutual.Willing method)


        	(axelrod.strategies.negation.Negation method)


        	(axelrod.strategies.oncebitten.FoolMeOnce static method)


        	(axelrod.strategies.oncebitten.ForgetfulFoolMeOnce method)


        	(axelrod.strategies.oncebitten.OnceBitten method)


        	(axelrod.strategies.prober.CollectiveStrategy method)


        	(axelrod.strategies.prober.Detective method)


        	(axelrod.strategies.prober.HardProber method)


        	(axelrod.strategies.prober.NaiveProber method)


        	(axelrod.strategies.prober.Prober method)


        	(axelrod.strategies.prober.Prober2 method)


        	(axelrod.strategies.prober.Prober3 method)


        	(axelrod.strategies.prober.Prober4 method)


        	(axelrod.strategies.prober.RemorsefulProber method)


        	(axelrod.strategies.punisher.InversePunisher method)


        	(axelrod.strategies.punisher.LevelPunisher method)


        	(axelrod.strategies.punisher.Punisher method)


        	(axelrod.strategies.punisher.TrickyLevelPunisher method)


        	(axelrod.strategies.qlearner.RiskyQLearner method)


        	(axelrod.strategies.rand.Random method)


        	(axelrod.strategies.resurrection.DoubleResurrection method)


        	(axelrod.strategies.resurrection.Resurrection method)


        	(axelrod.strategies.retaliate.LimitedRetaliate method)


        	(axelrod.strategies.retaliate.Retaliate method)


        	(axelrod.strategies.revised_downing.RevisedDowning method)


        	(axelrod.strategies.selfsteem.SelfSteem method)


        	(axelrod.strategies.sequence_player.SequencePlayer method)


        	(axelrod.strategies.shortmem.ShortMem static method)


        	(axelrod.strategies.titfortat.AdaptiveTitForTat method)


        	(axelrod.strategies.titfortat.AntiTitForTat static method)


        	(axelrod.strategies.titfortat.Bully static method)


        	(axelrod.strategies.titfortat.DynamicTwoTitsForTat method)


        	(axelrod.strategies.titfortat.Gradual method)


        	(axelrod.strategies.titfortat.HardTitFor2Tats static method)


        	(axelrod.strategies.titfortat.HardTitForTat static method)


        	(axelrod.strategies.titfortat.NTitsForMTats method)


        	(axelrod.strategies.titfortat.OmegaTFT method)


        	(axelrod.strategies.titfortat.OriginalGradual method)


        	(axelrod.strategies.titfortat.RandomTitForTat method)


        	(axelrod.strategies.titfortat.SlowTitForTwoTats2 method)


        	(axelrod.strategies.titfortat.SneakyTitForTat method)


        	(axelrod.strategies.titfortat.SpitefulTitForTat method)


        	(axelrod.strategies.titfortat.SuspiciousTitForTat static method)


        	(axelrod.strategies.titfortat.TitFor2Tats static method)


        	(axelrod.strategies.titfortat.TitForTat method)


        	(axelrod.strategies.titfortat.TwoTitsForTat static method)


        	(axelrod.strategies.verybad.VeryBad static method)


        	(axelrod.strategies.worse_and_worse.KnowledgeableWorseAndWorse method)


        	(axelrod.strategies.worse_and_worse.WorseAndWorse method)


        	(axelrod.strategies.worse_and_worse.WorseAndWorse2 method)


        	(axelrod.strategies.worse_and_worse.WorseAndWorse3 method)


      


  

  	
      	SuspiciousTitForTat (class in axelrod.strategies.titfortat)


  





T


  	
      	TF1 (class in axelrod.strategies.finite_state_machines)


      	TF2 (class in axelrod.strategies.finite_state_machines)


      	TF3 (class in axelrod.strategies.finite_state_machines)


      	ThueMorse (class in axelrod.strategies.sequence_player)


      	ThueMorseInverse (class in axelrod.strategies.sequence_player)


      	Thumper (class in axelrod.strategies.finite_state_machines)


      	TitFor2Tats (class in axelrod.strategies.titfortat)


      	TitForTat (class in axelrod.strategies.titfortat)


  

  	
      	TrickyCooperator (class in axelrod.strategies.cooperator)


      	TrickyDefector (class in axelrod.strategies.defector)


      	TrickyLevelPunisher (class in axelrod.strategies.punisher)


      	try_return() (axelrod.strategies.axelrod_second.SecondByBorufsen method)

      
        	(axelrod.strategies.axelrod_second.SecondByHarrington method)


        	(axelrod.strategies.axelrod_second.SecondByWeiner method)


        	(axelrod.strategies.axelrod_second.SecondByYamachi method)


      


      	TwoTitsForTat (class in axelrod.strategies.titfortat)


  





U


  	
      	update_history_by_cond() (axelrod.strategies.dbs.DBS method)


      	update_state() (axelrod.strategies.axelrod_second.SecondByTranquilizer method)


  

  	
      	UsuallyCooperates (class in axelrod.strategies.finite_state_machines)


      	UsuallyDefects (class in axelrod.strategies.finite_state_machines)


  





V


  	
      	VeryBad (class in axelrod.strategies.verybad)


  





W


  	
      	Willing (class in axelrod.strategies.mutual)


      	Winner12 (class in axelrod.strategies.lookerup)


      	Winner21 (class in axelrod.strategies.lookerup)


      	WinShiftLoseStay (class in axelrod.strategies.memoryone)


  

  	
      	WinStayLoseShift (class in axelrod.strategies.memoryone)


      	WorseAndWorse (class in axelrod.strategies.worse_and_worse)


      	WorseAndWorse2 (class in axelrod.strategies.worse_and_worse)


      	WorseAndWorse3 (class in axelrod.strategies.worse_and_worse)


  





Z


  	
      	ZDExtort2 (class in axelrod.strategies.zero_determinant)


      	ZDExtort2v2 (class in axelrod.strategies.zero_determinant)


      	ZDExtort3 (class in axelrod.strategies.zero_determinant)


      	ZDExtort4 (class in axelrod.strategies.zero_determinant)


      	ZDExtortion (class in axelrod.strategies.zero_determinant)


  

  	
      	ZDGen2 (class in axelrod.strategies.zero_determinant)


      	ZDGTFT2 (class in axelrod.strategies.zero_determinant)


      	ZDMem2 (class in axelrod.strategies.gambler)


      	ZDMischief (class in axelrod.strategies.zero_determinant)


      	ZDSet2 (class in axelrod.strategies.zero_determinant)


  







          

      

      

    

  

    
      
          
            
  All modules for which code is available

	axelrod.strategies.adaptive

	axelrod.strategies.adaptor

	axelrod.strategies.alternator

	axelrod.strategies.ann

	axelrod.strategies.apavlov

	axelrod.strategies.appeaser

	axelrod.strategies.averagecopier

	axelrod.strategies.axelrod_first

	axelrod.strategies.axelrod_second

	axelrod.strategies.backstabber

	axelrod.strategies.better_and_better

	axelrod.strategies.bush_mosteller

	axelrod.strategies.calculator

	axelrod.strategies.cooperator

	axelrod.strategies.cycler

	axelrod.strategies.darwin

	axelrod.strategies.dbs

	axelrod.strategies.defector

	axelrod.strategies.doubler

	axelrod.strategies.finite_state_machines

	axelrod.strategies.forgiver

	axelrod.strategies.gambler

	axelrod.strategies.geller

	axelrod.strategies.gobymajority

	axelrod.strategies.gradualkiller

	axelrod.strategies.grudger

	axelrod.strategies.grumpy

	axelrod.strategies.handshake

	axelrod.strategies.hmm

	axelrod.strategies.hunter

	axelrod.strategies.inverse

	axelrod.strategies.lookerup

	axelrod.strategies.mathematicalconstants

	axelrod.strategies.memoryone

	axelrod.strategies.memorytwo

	axelrod.strategies.meta

	axelrod.strategies.mindcontrol

	axelrod.strategies.mindreader

	axelrod.strategies.mutual

	axelrod.strategies.negation

	axelrod.strategies.oncebitten

	axelrod.strategies.prober

	axelrod.strategies.punisher

	axelrod.strategies.qlearner

	axelrod.strategies.rand

	axelrod.strategies.resurrection

	axelrod.strategies.retaliate

	axelrod.strategies.revised_downing

	axelrod.strategies.selfsteem

	axelrod.strategies.sequence_player

	axelrod.strategies.shortmem

	axelrod.strategies.stalker

	axelrod.strategies.titfortat

	axelrod.strategies.verybad

	axelrod.strategies.worse_and_worse

	axelrod.strategies.zero_determinant




          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.adaptive

from typing import List

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Adaptive(Player):
    """Start with a specific sequence of C and D, then play the strategy that
    has worked best, recalculated each turn.

    Names:

    - Adaptive: [Li2011]_

    """

    name = "Adaptive"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, initial_plays: List[Action] = None) -> None:
        super().__init__()
        if not initial_plays:
            initial_plays = [C] * 6 + [D] * 5
        self.initial_plays = initial_plays
        self.scores = {C: 0, D: 0}

    def score_last_round(self, opponent: Player):
        # Load the default game if not supplied by a tournament.
        game = self.match_attributes["game"]
        if len(self.history):
            last_round = (self.history[-1], opponent.history[-1])
            scores = game.score(last_round)
            self.scores[last_round[0]] += scores[0]

[docs]    def strategy(self, opponent: Player) -> Action:
        # Update scores from the last play
        self.score_last_round(opponent)
        # Begin by playing the sequence C,C,C,C,C,C,D,D,D,D,D
        index = len(self.history)
        if index < len(self.initial_plays):
            return self.initial_plays[index]
        # Play the strategy with the highest average score so far
        if self.scores[C] > self.scores[D]:
            return C
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.adaptor

from typing import Dict, Tuple

from axelrod.action import Action
from axelrod.player import Player
from numpy import heaviside

C, D = Action.C, Action.D


[docs]class AbstractAdaptor(Player):
    """
    An adaptive strategy that updates an internal state based on the last
    round of play. Using this state the player Cooperates with a probability
    derived from the state.

    s, float:
        the internal state, initially 0
    perr, float:
        an error threshold for misinterpreted moves
    delta, a dictionary of floats:
        additive update values for s depending on the last round's outcome

    Names:

    - Adaptor: [Hauert2002]_

    """

    name = "AbstractAdaptor"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, delta: Dict[Tuple[Action, Action], float],
                 perr: float = 0.01) -> None:
        super().__init__()
        self.perr = perr
        self.delta = delta
        self.s = 0.

[docs]    def strategy(self, opponent: Player) -> Action:
        if self.history:
            # Update internal state from the last play
            last_round = (self.history[-1], opponent.history[-1])
            self.s += self.delta[last_round]

        # Compute probability of Cooperation
        p = self.perr + (1.0 - 2 * self.perr) * (
            heaviside(self.s + 1, 1) - heaviside(self.s - 1, 1))
        # Draw action
        action = self._random.random_choice(p)
        return action




[docs]class AdaptorBrief(AbstractAdaptor):
    """
    An Adaptor trained on short interactions.

    Names:

    - AdaptorBrief: [Hauert2002]_

    """

    name = "AdaptorBrief"

    def __init__(self) -> None:
        delta = {
            (C, C): 0.,         # R
            (C, D): -1.001505,  # S
            (D, C): 0.992107,   # T
            (D, D): -0.638734   # P
        }
        super().__init__(delta=delta)



[docs]class AdaptorLong(AbstractAdaptor):
    """
    An Adaptor trained on long interactions.

    Names:

    - AdaptorLong: [Hauert2002]_

    """

    name = "AdaptorLong"

    def __init__(self) -> None:
        delta = {
            (C, C): 0.,        # R
            (C, D): 1.888159,  # S
            (D, C): 1.858883,  # T
            (D, D): -0.995703  # P
        }
        super().__init__(delta=delta)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.alternator

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Alternator(Player):
    """
    A player who alternates between cooperating and defecting.

    Names

    - Alternator: [Axelrod1984]_
    - Periodic player CD: [Mittal2009]_
    """

    name = "Alternator"
    classifier = {
        "memory_depth": 1,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return C
        if self.history[-1] == C:
            return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.ann

from typing import List, Tuple

import numpy as np
from axelrod.action import Action
from axelrod.evolvable_player import (
    EvolvablePlayer,
    InsufficientParametersError,
    crossover_lists,
)
from axelrod.load_data_ import load_weights
from axelrod.player import Player

C, D = Action.C, Action.D
nn_weights = load_weights()

# Neural Network and Activation functions
relu = np.vectorize(lambda x: max(x, 0))


def num_weights(num_features, num_hidden):
    size = num_features * num_hidden + 2 * num_hidden
    return size


[docs]def compute_features(player: Player, opponent: Player) -> List[int]:
    """
    Compute history features for Neural Network:
    * Opponent's first move is C
    * Opponent's first move is D
    * Opponent's second move is C
    * Opponent's second move is D
    * Player's previous move is C
    * Player's previous move is D
    * Player's second previous move is C
    * Player's second previous move is D
    * Opponent's previous move is C
    * Opponent's previous move is D
    * Opponent's second previous move is C
    * Opponent's second previous move is D
    * Total opponent cooperations
    * Total opponent defections
    * Total player cooperations
    * Total player defections
    * Round number
    """
    if len(opponent.history) == 0:
        opponent_first_c = 0
        opponent_first_d = 0
        opponent_second_c = 0
        opponent_second_d = 0
        my_previous_c = 0
        my_previous_d = 0
        my_previous2_c = 0
        my_previous2_d = 0
        opponent_previous_c = 0
        opponent_previous_d = 0
        opponent_previous2_c = 0
        opponent_previous2_d = 0

    elif len(opponent.history) == 1:
        opponent_first_c = 1 if opponent.history[0] == C else 0
        opponent_first_d = 1 if opponent.history[0] == D else 0
        opponent_second_c = 0
        opponent_second_d = 0
        my_previous_c = 1 if player.history[-1] == C else 0
        my_previous_d = 1 if player.history[-1] == D else 0
        my_previous2_c = 0
        my_previous2_d = 0
        opponent_previous_c = 1 if opponent.history[-1] == C else 0
        opponent_previous_d = 1 if opponent.history[-1] == D else 0
        opponent_previous2_c = 0
        opponent_previous2_d = 0

    else:
        opponent_first_c = 1 if opponent.history[0] == C else 0
        opponent_first_d = 1 if opponent.history[0] == D else 0
        opponent_second_c = 1 if opponent.history[1] == C else 0
        opponent_second_d = 1 if opponent.history[1] == D else 0
        my_previous_c = 1 if player.history[-1] == C else 0
        my_previous_d = 1 if player.history[-1] == D else 0
        my_previous2_c = 1 if player.history[-2] == C else 0
        my_previous2_d = 1 if player.history[-2] == D else 0
        opponent_previous_c = 1 if opponent.history[-1] == C else 0
        opponent_previous_d = 1 if opponent.history[-1] == D else 0
        opponent_previous2_c = 1 if opponent.history[-2] == C else 0
        opponent_previous2_d = 1 if opponent.history[-2] == D else 0

    # Remaining Features
    total_opponent_c = opponent.cooperations
    total_opponent_d = opponent.defections
    total_player_c = player.cooperations
    total_player_d = player.defections

    return [
        opponent_first_c,
        opponent_first_d,
        opponent_second_c,
        opponent_second_d,
        my_previous_c,
        my_previous_d,
        my_previous2_c,
        my_previous2_d,
        opponent_previous_c,
        opponent_previous_d,
        opponent_previous2_c,
        opponent_previous2_d,
        total_opponent_c,
        total_opponent_d,
        total_player_c,
        total_player_d,
        len(player.history),
    ]



[docs]def activate(
    bias: List[float], hidden: List[float], output: List[float], inputs: List[int]
) -> float:
    """
    Compute the output of the neural network:
        output = relu(inputs * hidden_weights + bias) * output_weights
    """
    inputs = np.array(inputs)
    hidden_values = bias + np.dot(hidden, inputs)
    hidden_values = relu(hidden_values)
    output_value = np.dot(hidden_values, output)
    return output_value



[docs]def split_weights(
    weights: List[float], num_features: int, num_hidden: int
) -> Tuple[List[List[float]], List[float], List[float]]:
    """Splits the input vector into the the NN bias weights and layer
    parameters."""
    # Check weights is the right length
    expected_length = num_hidden * 2 + num_features * num_hidden
    if expected_length != len(weights):
        raise ValueError("NN weights array has an incorrect size.")

    number_of_input_to_hidden_weights = num_features * num_hidden
    number_of_hidden_to_output_weights = num_hidden

    input2hidden = []
    for i in range(0, number_of_input_to_hidden_weights, num_features):
        input2hidden.append(weights[i : i + num_features])

    start = number_of_input_to_hidden_weights
    end = number_of_input_to_hidden_weights + number_of_hidden_to_output_weights

    hidden2output = weights[start:end]
    bias = weights[end:]
    return input2hidden, hidden2output, bias



[docs]class ANN(Player):
    """Artificial Neural Network based strategy.

    A single layer neural network based strategy, with the following
    features:
    * Opponent's first move is C
    * Opponent's first move is D
    * Opponent's second move is C
    * Opponent's second move is D
    * Player's previous move is C
    * Player's previous move is D
    * Player's second previous move is C
    * Player's second previous move is D
    * Opponent's previous move is C
    * Opponent's previous move is D
    * Opponent's second previous move is C
    * Opponent's second previous move is D
    * Total opponent cooperations
    * Total opponent defections
    * Total player cooperations
    * Total player defections
    * Round number

    Original Source: https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#file-ann-strategy-test-L60


    Names

    - Artificial Neural Network based strategy: Original name by Martin Jones
    """

    name = "ANN"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
        "long_run_time": False,
    }

    def __init__(
        self, num_features: int, num_hidden: int,
        weights: List[float] = None
    ) -> None:
        Player.__init__(self)
        self.num_features = num_features
        self.num_hidden = num_hidden
        self._process_weights(weights, num_features, num_hidden)

    def _process_weights(self, weights, num_features, num_hidden):
        self.weights = list(weights)
        (i2h, h2o, bias) = split_weights(weights, num_features, num_hidden)
        self.input_to_hidden_layer_weights = np.array(i2h)
        self.hidden_to_output_layer_weights = np.array(h2o)
        self.bias_weights = np.array(bias)

[docs]    def strategy(self, opponent: Player) -> Action:
        features = compute_features(self, opponent)
        output = activate(
            self.bias_weights,
            self.input_to_hidden_layer_weights,
            self.hidden_to_output_layer_weights,
            features,
        )
        if output > 0:
            return C
        else:
            return D




[docs]class EvolvableANN(ANN, EvolvablePlayer):
    """Evolvable version of ANN."""
    name = "EvolvableANN"

    def __init__(
        self, num_features: int, num_hidden: int,
        weights: List[float] = None,
        mutation_probability: float = None,
        mutation_distance: int = 5,
        seed: int = None
    ) -> None:
        EvolvablePlayer.__init__(self, seed=seed)
        num_features, num_hidden, weights, mutation_probability = self._normalize_parameters(
            num_features, num_hidden, weights, mutation_probability)
        ANN.__init__(self,
                     num_features=num_features,
                     num_hidden=num_hidden,
                     weights=weights)
        self.mutation_probability = mutation_probability
        self.mutation_distance = mutation_distance
        self.overwrite_init_kwargs(
            num_features=num_features,
            num_hidden=num_hidden,
            weights=weights,
            mutation_probability=mutation_probability)

    def _normalize_parameters(self, num_features=None, num_hidden=None, weights=None, mutation_probability=None):
        if not (num_features and num_hidden):
            raise InsufficientParametersError("Insufficient Parameters to instantiate EvolvableANN")
        size = num_weights(num_features, num_hidden)
        if not weights:
            weights = [self._random.uniform(-1, 1) for _ in range(size)]
        if mutation_probability is None:
            mutation_probability = 10. / size
        return num_features, num_hidden, weights, mutation_probability

    def mutate_weights(self, weights, num_features, num_hidden, mutation_probability,
                       mutation_distance):
        size = num_weights(num_features, num_hidden)
        randoms = self._random.random(size)
        for i, r in enumerate(randoms):
            if r < mutation_probability:
                p = 1 + self._random.uniform(-1, 1) * mutation_distance
                weights[i] *= p
        return weights

[docs]    def mutate(self):
        weights = self.mutate_weights(
            self.weights, self.num_features, self.num_hidden,
            self.mutation_probability, self.mutation_distance)
        return self.create_new(weights=weights)


[docs]    def crossover(self, other):
        if other.__class__ != self.__class__:
            raise TypeError("Crossover must be between the same player classes.")
        weights = crossover_lists(self.weights, other.weights, self._random)
        return self.create_new(weights=weights)




[docs]class EvolvedANN(ANN):
    """
    A strategy based on a pre-trained neural network with 17 features and a
    hidden layer of size 10.

    Trained using the `axelrod_dojo` version: 0.0.8
    Training data is archived at doi.org/10.5281/zenodo.1306926

    Names:

     - Evolved ANN: Original name by Martin Jones.
    """

    name = "Evolved ANN"

    def __init__(self) -> None:
        num_features, num_hidden, weights = nn_weights["Evolved ANN"]
        super().__init__(
            num_features=num_features,
            num_hidden=num_hidden,
            weights=weights)



[docs]class EvolvedANN5(ANN):
    """
    A strategy based on a pre-trained neural network with 17 features and a
    hidden layer of size 5.

    Trained using the `axelrod_dojo` version: 0.0.8
    Training data is archived at doi.org/10.5281/zenodo.1306931

    Names:

     - Evolved ANN 5: Original name by Marc Harper.
    """

    name = "Evolved ANN 5"

    def __init__(self) -> None:
        num_features, num_hidden, weights = nn_weights["Evolved ANN 5"]
        super().__init__(
            num_features=num_features,
            num_hidden=num_hidden,
            weights=weights)



[docs]class EvolvedANNNoise05(ANN):
    """
    A strategy based on a pre-trained neural network with a hidden layer of
    size 5, trained with noise=0.05.

    Trained using the `axelrod_dojo` version: 0.0.8
    Training data i archived at doi.org/10.5281/zenodo.1314247.

    Names:

     - Evolved ANN Noise 5: Original name by Marc Harper.
    """

    name = "Evolved ANN 5 Noise 05"

    def __init__(self) -> None:
        num_features, num_hidden, weights = nn_weights["Evolved ANN 5 Noise 05"]
        super().__init__(
            num_features=num_features,
            num_hidden=num_hidden,
            weights=weights)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.apavlov

from typing import Optional

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class APavlov2006(Player):
    """
    APavlov attempts to classify its opponent as one of five strategies:
    Cooperative, ALLD, STFT, PavlovD, or Random. APavlov then responds in a
    manner intended to achieve mutual cooperation or to defect against
    uncooperative opponents.

    Names:

    - Adaptive Pavlov 2006: [Li2007]_
    """

    name = "Adaptive Pavlov 2006"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.opponent_class = None  # type: Optional[str]

[docs]    def strategy(self, opponent: Player) -> Action:
        # TFT for six rounds
        if len(self.history) < 6:
            return D if opponent.history[-1:] == [D] else C
        # Classify opponent
        if len(self.history) % 6 == 0:
            if opponent.history[-6:] == [C] * 6:
                self.opponent_class = "Cooperative"
            if opponent.history[-6:] == [D] * 6:
                self.opponent_class = "ALLD"
            if opponent.history[-6:] == [D, C, D, C, D, C]:
                self.opponent_class = "STFT"
            if opponent.history[-6:] == [D, D, C, D, D, C]:
                self.opponent_class = "PavlovD"
            if not self.opponent_class:
                self.opponent_class = "Random"

        # Play according to classification
        if self.opponent_class in ["Random", "ALLD"]:
            return D
        if self.opponent_class == "STFT":
            if len(self.history) % 6 in [0, 1]:
                return C
            # TFT
            if opponent.history[-1:] == [D]:
                return D
        if self.opponent_class == "PavlovD":
            # Return D then C for the period
            if len(self.history) % 6 == 0:
                return D
        if self.opponent_class == "Cooperative":
            # TFT
            if opponent.history[-1:] == [D]:
                return D
        return C




[docs]class APavlov2011(Player):
    """
    APavlov attempts to classify its opponent as one of four strategies:
    Cooperative, ALLD, STFT, or Random. APavlov then responds in a manner
    intended to achieve mutual cooperation or to defect against
    uncooperative opponents.

    Names:

    - Adaptive Pavlov 2011: [Li2011]_
    """

    name = "Adaptive Pavlov 2011"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.opponent_class = None  # type: Optional[str]

[docs]    def strategy(self, opponent: Player) -> Action:
        # TFT for six rounds
        if len(self.history) < 6:
            return D if opponent.history[-1:] == [D] else C
        if len(self.history) % 6 == 0:
            # Classify opponent
            if opponent.history[-6:] == [C] * 6:
                self.opponent_class = "Cooperative"
            if opponent.history[-6:].count(D) >= 4:
                self.opponent_class = "ALLD"
            if opponent.history[-6:].count(D) == 3:
                self.opponent_class = "STFT"
            if not self.opponent_class:
                self.opponent_class = "Random"
        # Play according to classification
        if self.opponent_class in ["Random", "ALLD"]:
            return D
        if self.opponent_class == "STFT":
            # TFTT
            return D if opponent.history[-2:] == [D, D] else C
        if self.opponent_class == "Cooperative":
            # TFT
            return D if opponent.history[-1:] == [D] else C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.appeaser

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Appeaser(Player):
    """A player who tries to guess what the opponent wants.

    Switch the classifier every time the opponent plays D.
    Start with C, switch between C and D when opponent plays D.

    Names:

    - Appeaser: Original Name by Jochen Müller
    """

    name = "Appeaser"
    classifier = {
        "memory_depth": float("inf"),  # Depends on internal memory.
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not len(opponent.history):
            return C
        else:
            if opponent.history[-1] == D:
                if self.history[-1] == C:
                    return D
                else:
                    return C
        return self.history[-1]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.averagecopier

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class AverageCopier(Player):
    """
    The player will cooperate with probability p if the opponent's cooperation
    ratio is p. Starts with random decision.

    Names:

    - Average Copier: Original name by Geraint Palmer
    """

    name = "Average Copier"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) == 0:
            # Randomly picks a strategy (not affected by history).
            return self._random.random_choice(0.5)
        p = opponent.cooperations / len(opponent.history)
        return self._random.random_choice(p)




[docs]class NiceAverageCopier(Player):
    """
    Same as Average Copier, but always starts by cooperating.

    Names:

    - Average Copier: Original name by Owen Campbell
    """

    name = "Nice Average Copier"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) == 0:
            return C
        p = opponent.cooperations / len(opponent.history)
        return self._random.random_choice(p)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.axelrod_first

"""
Strategies submitted to Axelrod's first tournament. All strategies in this
module are prefixed by `FirstBy` to indicate that they were submitted in
Axelrod's First tournament by the given author.

Note that these strategies are implemented from the descriptions presented
in:

Axelrod, R. (1980). Effective Choice in the Prisoner’s Dilemma.
Journal of Conflict Resolution, 24(1), 3–25.

These descriptions are not always clear and/or precise and when assumptions have
been made they are explained in the strategy docstrings.
"""

from typing import Dict, List, Optional, Tuple

from axelrod.action import Action
from axelrod.player import Player
from axelrod.strategy_transformers import FinalTransformer
from scipy.stats import chisquare

from .memoryone import MemoryOnePlayer

C, D = Action.C, Action.D


[docs]class FirstByDavis(Player):
    """
    Submitted to Axelrod's first tournament by Morton Davis.

    The description written in [Axelrod1980]_ is:

    > "A player starts by cooperating for 10 rounds then plays Grudger,
    > defecting if at any point the opponent has defected."

    This strategy came 8th in Axelrod's original tournament.

    Names:

    - Davis: [Axelrod1980]_
    """

    name = "First by Davis"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, rounds_to_cooperate: int = 10) -> None:
        """
        Parameters
        ----------
        rounds_to_cooperate: int, 10
           The number of rounds to cooperate initially
        """
        super().__init__()
        self._rounds_to_cooperate = rounds_to_cooperate

[docs]    def strategy(self, opponent: Player) -> Action:
        """Begins by playing C, then plays D for the remaining rounds if the
        opponent ever plays D."""
        if len(self.history) < self._rounds_to_cooperate:
            return C
        if opponent.defections > 0:  # Implement Grudger
            return D
        return C




[docs]class FirstByDowning(Player):
    """
    Submitted to Axelrod's first tournament by Downing

    The description written in [Axelrod1980]_ is:

    > "This rule selects its choice to maximize its own longterm expected payoff on
    > the assumption that the other rule cooperates with a fixed probability which
    > depends only on whether the other player cooperated or defected on the previous
    > move. These two probabilities estimates are continuously updated as the game
    > progresses. Initially, they are both assumed to be .5, which amounts to the
    > pessimistic assumption that the other player is not responsive. This rule is
    > based on an outcome maximization interpretation of human performances proposed
    > by Downing (1975)."

    The Downing (1975) paper is "The Prisoner's Dilemma Game as a
    Problem-Solving Phenomenon" [Downing1975]_ and this is used to implement the
    strategy.

    There are a number of specific points in this paper, on page 371:

    > "[...] In these strategies, O's [the opponent's] response on trial N is in
    some way dependent or contingent on S's [the subject's] response on trial N-
    1. All varieties of these lag-one matching strategies can be defined by two
    parameters: the conditional probability that O will choose C following C by
    S, P(C_o | C_s) and the conditional probability that O will choose C
    following D by S, P(C_o, D_s)."

    Throughout the paper the strategy (S) assumes that the opponent (O) is
    playing a reactive strategy defined by these two conditional probabilities.

    The strategy aims to maximise the long run utility against such a strategy
    and the mechanism for this is described in Appendix A (more on this later).

    One final point from the main text is, on page 372:

    > "For the various lag-one matching strategies of O, the maximizing
    strategies of S will be 100% C, or 100% D, or for some strategies all S
    strategies will be functionally equivalent."

    This implies that the strategy S will either always cooperate or always
    defect (or be indifferent) dependent on the opponent's defining
    probabilities.

    To understand the particular mechanism that describes the strategy S, we
    refer to Appendix A of the paper on page 389.

    The stated goal of the strategy is to maximize (using the notation of the
    paper):

        EV_TOT = #CC(EV_CC) + #CD(EV_CD) + #DC(EV_DC) + #DD(EV_DD)

    This differs from the more modern literature where #CC, #CD, #DC and #DD
    would imply that counts of both players playing C and C, or the first
    playing C and the second D etc...
    In this case the author uses an argument based on the sequence of plays by
    the player (S) so #CC denotes the number of times the player plays C twice
    in a row.

    On the second page of the appendix, figure 4 (page 390)
    identifies an expression for EV_TOT.
    A specific term is made to disappear in
    the case of T - R = P - S (which is not the case for the standard
    (R, P, S, T) = (3, 1, 0, 5)):

    > "Where (t - r) = (p - s), EV_TOT will be a function of alpha, beta, t, r,
    p, s and N are known and V which is unknown.

    V is the total number of cooperations of the player S (this is noted earlier
    in the abstract) and as such the final expression (with only V as unknown)
    can be used to decide if V should indicate that S always cooperates or not.

    This final expression is used to show that EV_TOT is linear in the number of
    cooperations by the player thus justifying the fact that the player will
    always cooperate or defect.

    All of the above details are used to give the following interpretation of
    the strategy:

    1. On any given turn, the strategy will estimate alpha = P(C_o | C_s) and
    beta = P(C_o | D_s).
    2. The strategy will calculate the expected utility of always playing C OR
    always playing D against the estimated probabilities. This corresponds to:

        a. In the case of the player always cooperating:

           P_CC = alpha and P_CD = 1 - alpha

        b. In the case of the player always defecting:

           P_DC = beta and P_DD = 1 - beta


    Using this we have:

        E_C = alpha R + (1 - alpha) S
        E_D = beta T + (1 - beta) P

    Thus at every turn, the strategy will calculate those two values and
    cooperate if E_C > E_D and will defect if E_C < E_D.

    In the case of E_C = E_D, the player will alternate from their previous
    move. This is based on specific sentence from Axelrod's original paper:

    > "Under certain circumstances, DOWNING will even determine that the best
    > strategy is to alternate cooperation and defection."

    One final important point is the early game behaviour of the strategy. It
    has been noted that this strategy was implemented in a way that assumed that
    alpha and beta were both 1/2:

    > "Initially, they are both assumed to be .5, which amounts to the
    > pessimistic assumption that the other player is not responsive."

    Note that if alpha = beta = 1 / 2 then:

        E_C = alpha R + alpha S
        E_D = alpha T + alpha P

    And from the defining properties of the Prisoner's Dilemma (T > R > P > S)
    this gives: E_D > E_C.
    Thus, the player opens with a defection in the first two rounds. Note that
    from the Axelrod publications alone there is nothing to indicate defections
    on the first two rounds, although a defection in the opening round is clear.
    However there is a presentation available at
    http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/notes/azhar-ipd-Oct19th.pdf
    That clearly states that Downing defected in the first two rounds, thus this
    is assumed to be the behaviour. Interestingly, in future tournaments this
    strategy was revised to not defect on the opening two rounds.

    It is assumed that these first two rounds are used to create initial
    estimates of
    beta = P(C_o | D_s) and we will use the opening play of the player to
    estimate alpha = P(C_o | C_s).
    Thus we assume that the opponents first play is a response to a cooperation
    "before the match starts".

    So for example, if the plays are:

    [(D, C), (D, C)]

    Then the opponent's first cooperation counts as a cooperation in response to
    the non existent cooperation of round 0. The total number of cooperations in
    response to a cooperation is 1. We need to take in to account that extra
    phantom cooperation to estimate the probability alpha=P(C_o | C_s) as 1 / 1
    = 1.

    This is an assumption with no clear indication from the literature.

    --
    This strategy came 10th in Axelrod's original tournament.

    Names:

    - Downing: [Axelrod1980]_
    """

    name = "First by Downing"

    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.number_opponent_cooperations_in_response_to_C = 0
        self.number_opponent_cooperations_in_response_to_D = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        round_number = len(self.history) + 1

        if round_number == 1:
            return D
        if round_number == 2:
            if opponent.history[-1] == C:
                self.number_opponent_cooperations_in_response_to_C += 1
            return D

        if self.history[-2] == C and opponent.history[-1] == C:
            self.number_opponent_cooperations_in_response_to_C += 1
        if self.history[-2] == D and opponent.history[-1] == C:
            self.number_opponent_cooperations_in_response_to_D += 1

        # Adding 1 to cooperations for assumption that first opponent move
        # being a response to a cooperation. See docstring for more
        # information.
        alpha = (self.number_opponent_cooperations_in_response_to_C /
                 (self.cooperations + 1))
        # Adding 2 to defections on the assumption that the first two
        # moves are defections, which may not be true in a noisy match
        beta = (self.number_opponent_cooperations_in_response_to_D /
                 max(self.defections, 2))

        R, P, S, T = self.match_attributes["game"].RPST()
        expected_value_of_cooperating = alpha * R + (1 - alpha) * S
        expected_value_of_defecting = beta * T + (1 - beta) * P

        if expected_value_of_cooperating > expected_value_of_defecting:
            return C
        if expected_value_of_cooperating < expected_value_of_defecting:
            return D
        return self.history[-1].flip()




[docs]class FirstByFeld(Player):
    """
    Submitted to Axelrod's first tournament by Scott Feld.

    The description written in [Axelrod1980]_ is:

    > "This rule starts with tit for tat and gradually lowers its probability of
    > cooperation following the other's cooperation to .5 by the two hundredth
    > move. It always defects after a defection by the other."

    This strategy plays Tit For Tat, always defecting if the opponent defects but
    cooperating when the opponent cooperates with a gradually decreasing probability
    until it is only .5. Note that the description does not clearly indicate how
    the cooperation probability should drop. This implements a linear decreasing
    function.

    This strategy came 11th in Axelrod's original tournament.

    Names:

    - Feld: [Axelrod1980]_
    """

    name = "First by Feld"
    classifier = {
        "memory_depth": 200,  # Varies actually, eventually becomes depth 1
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        start_coop_prob: float = 1.0,
        end_coop_prob: float = 0.5,
        rounds_of_decay: int = 200,
    ) -> None:
        """
        Parameters
        ----------
        start_coop_prob, float
            The initial probability to cooperate
        end_coop_prob, float
            The final probability to cooperate
        rounds_of_decay, int
            The number of rounds to linearly decrease from start_coop_prob
            to end_coop_prob
        """
        super().__init__()
        self._start_coop_prob = start_coop_prob
        self._end_coop_prob = end_coop_prob
        self._rounds_of_decay = rounds_of_decay

    def _cooperation_probability(self) -> float:
        """It's not clear what the interpolating function is, so we'll do
        something simple that decreases monotonically from 1.0 to 0.5 over
        200 rounds."""
        diff = self._end_coop_prob - self._start_coop_prob
        slope = diff / self._rounds_of_decay
        rounds = len(self.history)
        return max(self._start_coop_prob + slope * rounds, self._end_coop_prob)

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return C
        if opponent.history[-1] == D:
            return D
        p = self._cooperation_probability()
        return self._random.random_choice(p)




[docs]class FirstByGraaskamp(Player):
    """
    Submitted to Axelrod's first tournament by James Graaskamp.

    The description written in [Axelrod1980]_ is:

    > "This rule plays tit for tat for 50 moves, defects on move 51, and then
    > plays 5 more moves of tit for tat. A check is then made to see if the player
    > seems to be RANDOM, in which case it defects from then on. A check is also
    > made to see if the other is TIT FOR TAT, ANALOGY (a program from the
    > preliminary tournament), and its own twin, in which case it plays tit for
    > tat. Otherwise it randomly defects every 5 to 15 moves, hoping that enough
    > trust has been built up so that the other player will not notice these
    > defections.:

    This is implemented as:

    1. Plays Tit For Tat for the first 50 rounds;
    2. Defects on round 51;
    3. Plays 5 further rounds of Tit For Tat;
    4. A check is then made to see if the opponent is playing randomly in which
       case it defects for the rest of the game. This is implemented with a chi
       squared test.
    5. The strategy also checks to see if the opponent is playing Tit For Tat or
       a clone of itself. If
       so it plays Tit For Tat. If not it cooperates and randomly defects every 5
       to 15 moves.

    Note that there is no information about 'Analogy' available thus Step 5 is
    a "best possible" interpretation of the description in the paper.
    Furthermore the test for the clone is implemented as checking that both
    players have played the same moves for the entire game. This is unlikely to
    be the original approach but no further details are available.

    This strategy came 9th in Axelrod’s original tournament.

    Names:

    - Graaskamp: [Axelrod1980]_
    """

    name = "First by Graaskamp"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, alpha: float = 0.05) -> None:
        """
        Parameters
        ----------
        alpha: float
            The significant level of p-value from chi-squared test with
            alpha == 0.05 by default.
        """
        super().__init__()
        self.alpha = alpha
        self.opponent_is_random = False
        self.next_random_defection_turn = None  # type: Optional[int]

[docs]    def strategy(self, opponent: Player) -> Action:
        """This is the actual strategy"""
        # First move
        if not self.history:
            return C
        # React to the opponent's last move
        if len(self.history) < 56:
            if opponent.history[-1] == D or len(self.history) == 50:
                return D
            return C

        # Check if opponent plays randomly, if so, defect for the rest of the game
        p_value = chisquare([opponent.cooperations, opponent.defections]).pvalue
        self.opponent_is_random = (p_value >= self.alpha) or self.opponent_is_random

        if self.opponent_is_random:
            return D
        if all(
            opponent.history[i] == self.history[i - 1]
            for i in range(1, len(self.history))
        ) or opponent.history == self.history:
            # Check if opponent plays Tit for Tat or a clone of itself.
            if opponent.history[-1] == D:
                return D
            return C

        if self.next_random_defection_turn is None:
            self.next_random_defection_turn = self._random.randint(5, 15) + len(self.history)

        if len(self.history) == self.next_random_defection_turn:
            # resample the next defection turn
            self.next_random_defection_turn = self._random.randint(5, 15) + len(self.history)
            return D
        return C




[docs]class FirstByGrofman(Player):
    """
    Submitted to Axelrod's first tournament by Bernard Grofman.

    The description written in [Axelrod1980]_ is:

     > "If the players did different things on the previous move, this rule
     > cooperates with probability 2/7. Otherwise this rule always cooperates."

    This strategy came 4th in Axelrod's original tournament.

    Names:

    - Grofman: [Axelrod1980]_
    """

    name = "First by Grofman"
    classifier = {
        "memory_depth": 1,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0 or self.history[-1] == opponent.history[-1]:
            return C
        return self._random.random_choice(2 / 7)




[docs]class FirstByJoss(MemoryOnePlayer):
    """
    Submitted to Axelrod's first tournament by Johann Joss.

    The description written in [Axelrod1980]_ is:

    > "This rule cooperates 90% of the time after a cooperation by the other. It
    > always defects after a defection by the other."

    This strategy came 12th in Axelrod's original tournament.

    Names:

    - Joss: [Axelrod1980]_
    - Hard Joss: [Stewart2012]_
    """

    name = "First by Joss"

    def __init__(self, p: float = 0.9) -> None:
        """
        Parameters
        ----------
        p, float
            The probability of cooperating when the previous round was (C, C)
            or (D, C), i.e. the opponent cooperated.
        """
        four_vector = (p, 0, p, 0)
        super().__init__(four_vector)



[docs]class FirstByNydegger(Player):
    """
    Submitted to Axelrod's first tournament by Rudy Nydegger.

    The description written in [Axelrod1980]_ is:

    > "The program begins with tit for tat for the first three moves, except
    > that if it was the only one to cooperate on the first move and the only one
    > to defect on the second move, it defects on the third move. After the third
    > move, its choice is determined from the 3 preceding outcomes in the
    > following manner. Let A be the sum formed by counting the other's defection
    > as 2 points and one's own as 1 point, and giving weights of 16, 4, and 1 to
    > the preceding three moves in chronological order. The choice can be
    > described as defecting only when A equals 1, 6, 7, 17, 22, 23, 26, 29, 30,
    > 31, 33, 38, 39, 45, 49, 54, 55, 58, or 61. Thus if all three preceding moves
    > are mutual defection, A = 63 and the rule cooperates.  This rule was
    > designed for use in laboratory experiments as a stooge which had a memory
    > and appeared to be trustworthy, potentially cooperative, but not gullible
    > (Nydegger, 1978)."

    The program begins with tit for tat for the first three moves, except
    that if it was the only one to cooperate on the first move and the only one
    to defect on the second move, it defects on the third move. After the
    third move, its choice is determined from the 3 preceding outcomes in the
    following manner.

    .. math::

        A = 16 a_1 + 4 a_2 + a_3

    Where :math:`a_i` is dependent on the outcome of the previous :math:`i` th
    round.  If both strategies defect, :math:`a_i=3`, if the opponent only defects:
    :math:`a_i=2` and finally if it is only this strategy that defects then
    :math:`a_i=1`.

    Finally this strategy defects if and only if:

    .. math::

        A \in \{1, 6, 7, 17, 22, 23, 26, 29, 30, 31, 33, 38, 39, 45, 49, 54, 55, 58, 61\}

    Thus if all three preceding moves are mutual defection, A = 63 and the rule
    cooperates. This rule was designed for use in laboratory experiments as a
    stooge which had a memory and appeared to be trustworthy, potentially
    cooperative, but not gullible.

    This strategy came 3rd in Axelrod's original tournament.

    Names:

    - Nydegger: [Axelrod1980]_
    """

    name = "First by Nydegger"
    classifier = {
        "memory_depth": 3,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        self.As = [1, 6, 7, 17, 22, 23, 26, 29, 30, 31, 33, 38, 39, 45, 49, 54, 55, 58, 61]
        self.score_map = {(C, C): 0, (C, D): 2, (D, C): 1, (D, D): 3}
        super().__init__()

[docs]    @staticmethod
    def score_history(
        my_history: List[Action],
        opponent_history: List[Action],
        score_map: Dict[Tuple[Action, Action], int],
    ) -> int:

        """Implements the Nydegger formula A = 16 a_1 + 4 a_2 + a_3"""
        a = 0
        for i, weight in [(-1, 16), (-2, 4), (-3, 1)]:
            plays = (my_history[i], opponent_history[i])
            a += weight * score_map[plays]
        return a


[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return C
        if len(self.history) == 1:
            # TFT
            return D if opponent.history[-1] == D else C
        if len(self.history) == 2:
            if opponent.history[0:2] == [D, C]:
                return D
            else:
                # TFT
                return D if opponent.history[-1] == D else C
        A = self.score_history(self.history[-3:], opponent.history[-3:], self.score_map)
        if A in self.As:
            return D
        return C




[docs]class FirstByShubik(Player):
    """
    Submitted to Axelrod's first tournament by Martin Shubik.

    The description written in [Axelrod1980]_ is:

    > "This rule cooperates until the other defects, and then defects once. If
    > the other defects again after the rule's cooperation is resumed, the rule
    > defects twice. In general, the length of retaliation is increased by one for
    > each departure from mutual cooperation. This rule is described with its
    > strategic implications in Shubik (1970). Further treatment of its is given
    > in Taylor (1976).

    There is some room for interpretation as to how the strategy reacts to a
    defection on the turn where it starts to cooperate once more. In Shubik
    (1970) the strategy is described as:

    > "I will play my move 1 to begin with and will continue to do so, so long
    > as my information shows that the other player has chosen his move 1. If my
    > information tells me he has used move 2, then I will use move 2 for the
    > immediate k subsequent periods, after which I will resume using move 1. If
    > he uses his move 2 again after I have resumed using move 1, then I will
    > switch to move 2 for the k + 1 immediately subsequent periods . . . and so
    > on, increasing my retaliation by an extra period for each departure from the
    > (1, 1) steady state."

    This is interpreted as:

    The player cooperates, if when it is cooperating, the opponent defects it
    defects for k rounds. After k rounds it starts cooperating again and
    increments the value of k if the opponent defects again.

    This strategy came 5th in Axelrod's original tournament.

    Names:

    - Shubik: [Axelrod1980]_
    """

    name = "First by Shubik"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.is_retaliating = False
        self.retaliation_length = 0
        self.retaliation_remaining = 0

    def _decrease_retaliation_counter(self):
        """Lower the remaining owed retaliation count and flip to non-retaliate
        if the count drops to zero."""
        if self.is_retaliating:
            self.retaliation_remaining -= 1
            if self.retaliation_remaining == 0:
                self.is_retaliating = False

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return C

        if self.is_retaliating:
            # Are we retaliating still?
            self._decrease_retaliation_counter()
            return D

        if opponent.history[-1] == D and self.history[-1] == C:
            # "If he uses his move 2 again after I have resumed using move 1,
            # then I will switch to move 2 for the k + 1 immediately subsequent
            # periods"
            self.is_retaliating = True
            self.retaliation_length += 1
            self.retaliation_remaining = self.retaliation_length
            self._decrease_retaliation_counter()
            return D
        return C




[docs]class FirstByTullock(Player):
    """
    Submitted to Axelrod's first tournament by Gordon Tullock.

    The description written in [Axelrod1980]_ is:

    > "This rule cooperates on the first eleven moves. It then cooperates 10%
    > less than the other player has cooperated on the preceding ten moves. This
    > rule is based on an idea developed in Overcast and Tullock (1971). Professor
    > Tullock was invited to specify how the idea could be implemented, and he did
    > so out of scientific interest rather than an expectation that it would be a
    > likely winner."

    This is interpreted as:

    Cooperates for the first 11 rounds then randomly cooperates 10% less often
    than the opponent has in the previous 10 rounds.

    This strategy came 13th in Axelrod's original tournament.

    Names:

    - Tullock: [Axelrod1980]_
    """

    name = "First by Tullock"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self._rounds_to_cooperate = 11

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) < self._rounds_to_cooperate:
            return C
        rounds = self._rounds_to_cooperate - 1
        cooperate_count = opponent.history[-rounds:].count(C)
        prop_cooperate = cooperate_count / rounds
        prob_cooperate = max(0, prop_cooperate - 0.10)
        return self._random.random_choice(prob_cooperate)




[docs]class FirstByAnonymous(Player):
    """
    Submitted to Axelrod's first tournament by a graduate student whose name was
    withheld.

    The description written in [Axelrod1980]_ is:

    > "This rule has a probability of cooperating, P, which is initially 30% and
    > is updated every 10 moves. P is adjusted if the other player seems random,
    > very cooperative, or very uncooperative. P is also adjusted after move 130
    > if the rule has a lower score than the other player. Unfortunately, the
    > complex process of adjustment frequently left the probability of cooperation
    > in the 30% to 70% range, and therefore the rule appeared random to many
    > other players."

    Given the lack of detail this strategy is implemented based on the final
    sentence of the description which is to have a cooperation probability that
    is uniformly random in the 30 to 70% range.

    Names:

    - (Name withheld): [Axelrod1980]_
    """

    name = "First by Anonymous"
    classifier = {
        "memory_depth": 0,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        r = self._random.uniform(3, 7) / 10
        return self._random.random_choice(r)




[docs]@FinalTransformer((D, D), name_prefix=None)
class FirstBySteinAndRapoport(Player):
    """
    Submitted to Axelrod's first tournament by William Stein and Amnon Rapoport.

    The description written in [Axelrod1980]_ is:

    > "This rule plays tit for tat except that it cooperates on the first four
    > moves, it defects on the last two moves, and every fifteen moves it checks
    > to see if the opponent seems to be playing randomly. This check uses a
    > chi-squared test of the other's transition probabilities and also checks for
    > alternating moves of CD and DC.

    This is implemented as follows:

    1. It cooperates for the first 4 moves.
    2. It defects on the last 2 moves.
    3. Every 15 moves it makes use of a `chi-squared
       test <http://en.wikipedia.org/wiki/Chi-squared_test>`_ to check if the
       opponent is playing randomly. If so it defects.

    This strategy came 6th in Axelrod's original tournament.

    Names:

    - SteinAndRapoport: [Axelrod1980]_
    """

    name = "First by Stein and Rapoport"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, alpha: float = 0.05) -> None:
        """
        Parameters
        ----------
        alpha: float
            The significant level of p-value from chi-squared test with
            alpha == 0.05 by default.
        """
        super().__init__()
        self.alpha = alpha
        self.opponent_is_random = False

    def strategy(self, opponent: Player) -> Action:
        round_number = len(self.history) + 1

        # First 4 moves
        if round_number < 5:
            return C
        # For first 15 rounds tit for tat as we do not know opponents strategy
        elif round_number < 15:
            return opponent.history[-1]

        if round_number % 15 == 0:
            p_value = chisquare([opponent.cooperations, opponent.defections]).pvalue
            self.opponent_is_random = p_value >= self.alpha

        if self.opponent_is_random:
            # Defect if opponent plays randomly
            return D
        else:  # TitForTat if opponent plays not randomly
            return opponent.history[-1]



[docs]@FinalTransformer((D, D), name_prefix=None)
class FirstByTidemanAndChieruzzi(Player):
    """
    Submitted to Axelrod's first tournament by Nicolas Tideman and Paula
    Chieruzzi.

    The description written in [Axelrod1980]_ is:

    > "This rule begins with cooperation and tit for tat. However, when the
    > other player finishes his second run of defec- tions, an extra punishment is
    > instituted, and the number of punishing defections is increased by one with
    > each run of the other's defections. The other player is given a fresh start
    > if he is 10 or more points behind, if he has not just started a run of
    > defections, if it has been at least 20 moves since a fresh start, if there
    > are at least 10 moves remaining, and if the number of defections differs
    > from a 50-50 random generator by at least 3.0 standard deviations. A fresh
    > start involves two cooperations and then play as if the game had just
    > started. The program defects automatically on the last two moves."

    This is interpreted as:

    1. Every run of defections played by the opponent increases the number of
    defections that this strategy retaliates with by 1.

    2. The opponent is given a ‘fresh start’ if:
        - it is 10 points behind this strategy
        - and it has not just started a run of defections
        - and it has been at least 20 rounds since the last ‘fresh start’
        - and there are more than 10 rounds remaining in the match
        - and the total number of defections differs from a 50-50 random sample
          by at least 3.0 standard deviations.

        A ‘fresh start’ is a sequence of two cooperations followed by an assumption
        that the game has just started (everything is forgotten).

    3. The strategy defects on the last two moves.

    This strategy came 2nd in Axelrod’s original tournament.

    Names:

    - TidemanAndChieruzzi: [Axelrod1980]_
    """

    name = "First by Tideman and Chieruzzi"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.is_retaliating = False
        self.retaliation_length = 0
        self.retaliation_remaining = 0
        self.current_score = 0
        self.opponent_score = 0
        self.last_fresh_start = 0
        self.fresh_start = False
        self.remembered_number_of_opponent_defectioons = 0

    def _decrease_retaliation_counter(self):
        """Lower the remaining owed retaliation count and flip to non-retaliate
        if the count drops to zero."""
        if self.is_retaliating:
            self.retaliation_remaining -= 1
            if self.retaliation_remaining == 0:
                self.is_retaliating = False

    def _fresh_start(self):
        """Give the opponent a fresh start by forgetting the past"""
        self.is_retaliating = False
        self.retaliation_length = 0
        self.retaliation_remaining = 0
        self.remembered_number_of_opponent_defectioons = 0

    def _score_last_round(self, opponent: Player):
        """Updates the scores for each player."""
        # Load the default game if not supplied by a tournament.
        game = self.match_attributes["game"]
        last_round = (self.history[-1], opponent.history[-1])
        scores = game.score(last_round)
        self.current_score += scores[0]
        self.opponent_score += scores[1]

    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return C

        if opponent.history[-1] == D:
            self.remembered_number_of_opponent_defectioons += 1

        # Calculate the scores.
        self._score_last_round(opponent)

        # Check if we have recently given the strategy a fresh start.
        if self.fresh_start:
            self.fresh_start = False
            return C  # Second cooperation

        # Check conditions to give opponent a fresh start.
        current_round = len(self.history) + 1
        if self.last_fresh_start == 0:
            valid_fresh_start = True
        # There needs to be at least 20 rounds before the next fresh start
        else:
            valid_fresh_start = current_round - self.last_fresh_start >= 20

        if valid_fresh_start:
            valid_points = self.current_score - self.opponent_score >= 10
            valid_rounds = self.match_attributes["length"] - current_round >= 10
            opponent_is_cooperating = opponent.history[-1] == C
            if valid_points and valid_rounds and opponent_is_cooperating:
                # 50-50 split is based off the binomial distribution.
                N = opponent.cooperations + opponent.defections
                # std_dev = sqrt(N*p*(1-p)) where p is 1 / 2.
                std_deviation = (N ** (1 / 2)) / 2
                lower = N / 2 - 3 * std_deviation
                upper = N / 2 + 3 * std_deviation
                if (self.remembered_number_of_opponent_defectioons <= lower or
                    self.remembered_number_of_opponent_defectioons >= upper):
                    # Opponent deserves a fresh start
                    self.last_fresh_start = current_round
                    self._fresh_start()
                    self.fresh_start = True
                    return C  # First cooperation

        if self.is_retaliating:
            # Are we retaliating still?
            self._decrease_retaliation_counter()
            return D

        if opponent.history[-1] == D:
            self.is_retaliating = True
            self.retaliation_length += 1
            self.retaliation_remaining = self.retaliation_length
            self._decrease_retaliation_counter()
            return D

        return C





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.axelrod_second

"""
Strategies from Axelrod's second tournament. All strategies in this module are
prefixed by `SecondBy` to indicate that they were submitted in Axelrod's Second
tournament by the given author.
"""

from typing import List

import numpy as np
from axelrod.action import Action
from axelrod.interaction_utils import compute_final_score
from axelrod.player import Player
from axelrod.strategies.finite_state_machines import FSMPlayer

C, D = Action.C, Action.D


[docs]class SecondByChampion(Player):
    """
    Strategy submitted to Axelrod's second tournament by Danny Champion.

    This player cooperates on the first 10 moves and plays Tit for Tat for the
    next 15 more moves. After 25 moves, the program cooperates unless all the
    following are true: the other player defected on the previous move, the
    other player cooperated less than 60% and the random number between 0 and 1
    is greater that the other player's cooperation rate.

    Names:

    - Champion: [Axelrod1980b]_
    """

    name = "Second by Champion"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history)
        # Cooperate for the first 10 turns
        if current_round == 0:
            return C
        if current_round < 10:
            return C
        # Mirror partner for the next phase
        if current_round < 25:
            return opponent.history[-1]
        # Now cooperate unless all of the necessary conditions are true
        defection_prop = opponent.defections / len(opponent.history)
        if opponent.history[-1] == D:
            r = self._random.random()
            if defection_prop >= max(0.4, r):
                return D
        return C




[docs]class SecondByEatherley(Player):
    """
    Strategy submitted to Axelrod's second tournament by Graham Eatherley.

    A player that keeps track of how many times in the game the other player
    defected. After the other player defects, it defects with a probability
    equal to the ratio of the other's total defections to the total moves to
    that point.

    Names:

    - Eatherley: [Axelrod1980b]_
    """

    name = "Second by Eatherley"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        # Cooperate on the first move
        if not len(opponent.history):
            return C
        # Reciprocate cooperation
        if opponent.history[-1] == C:
            return C
        # Respond to defections with probability equal to opponent's total
        # proportion of defections
        defection_prop = opponent.defections / len(opponent.history)
        return self._random.random_choice(1 - defection_prop)




[docs]class SecondByTester(Player):
    """
    Submitted to Axelrod's second tournament by David Gladstein.

    This strategy is a TFT variant that attempts to exploit certain strategies. It
    defects on the first move. If the opponent ever defects, TESTER 'apologies' by
    cooperating and then plays TFT for the rest of the game. Otherwise TESTER
    alternates cooperation and defection.

    This strategy came 46th in Axelrod's second tournament.

    Names:

    - Tester: [Axelrod1980b]_
    """

    name = "Second by Tester"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.is_TFT = False

[docs]    def strategy(self, opponent: Player) -> Action:
        # Defect on the first move
        if not opponent.history:
            return D
        # Am I TFT?
        if self.is_TFT:
            return D if opponent.history[-1:] == [D] else C
        else:
            # Did opponent defect?
            if opponent.history[-1] == D:
                self.is_TFT = True
                return C
            if len(self.history) in [1, 2]:
                return C
            # Alternate C and D
            return self.history[-1].flip()




[docs]class SecondByGladstein(Player):
    """
    Submitted to Axelrod's second tournament by David Gladstein.

    This strategy is also known as Tester and is based on the reverse
    engineering of the Fortran strategies from Axelrod's second tournament.

    This strategy is a TFT variant that defects on the first round in order to
    test the opponent's response. If the opponent ever defects, the strategy
    'apologizes' by cooperating and then plays TFT for the rest of the game.
    Otherwise, it defects as much as possible subject to the constraint that
    the ratio of its defections to moves remains under 0.5, not counting the
    first defection.

    Names:

    - Gladstein: [Axelrod1980b]_
    - Tester: [Axelrod1980b]_
    """

    name = "Second by Gladstein"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        # This strategy assumes the opponent is a patsy
        self.patsy = True

[docs]    def strategy(self, opponent: Player) -> Action:
        # Defect on the first move
        if not self.history:
            return D
        # Is the opponent a patsy?
        if self.patsy:
            # If the opponent defects, apologize and play TFT.
            if opponent.history[-1] == D:
                self.patsy = False
                return C
            # Cooperate as long as the cooperation ratio is below 0.5
            cooperation_ratio = self.cooperations / len(self.history)
            if cooperation_ratio > 0.5:
                return D
            return C
        else:
            # Play TFT
            return opponent.history[-1]




[docs]class SecondByTranquilizer(Player):

    """
    Submitted to Axelrod's second tournament by Craig Feathers

    Description given in Axelrod's "More Effective Choice in the
    Prisoner's Dilemma" paper: The rule normally cooperates but
    is ready to defect if the other player defects too often.
    Thus the rule tends to cooperate for the first dozen or two moves
    if the other player is cooperating, but then it throws in a
    defection. If the other player continues to cooperate, then defections
    become more frequent. But as long as Tranquilizer is maintaining an
    average payoff of at least 2.25 points per move, it will never defect
    twice in succession and it will not defect more than
    one-quarter of the time.

    This implementation is based on the reverse engineering of the
    Fortran strategy K67R from Axelrod's second tournament.
    Reversed engineered by: Owen Campbell, Will Guo and Mansour Hakem.

    The strategy starts by cooperating and has 3 states.

    At the start of the strategy it updates its states:

    - It counts the number of consecutive defections by the opponent.
    - If it was in state 2 it moves to state 0 and calculates the
      following quantities two_turns_after_good_defection_ratio and
      two_turns_after_good_defection_ratio_count.

      Formula for:

      two_turns_after_good_defection_ratio:

      self.two_turns_after_good_defection_ratio = (
      ((self.two_turns_after_good_defection_ratio
      * self.two_turns_after_good_defection_ratio_count)
      + (3 - (3 * self.dict[opponent.history[-1]]))
      + (2 * self.dict[self.history[-1]])
      - ((self.dict[opponent.history[-1]]
      * self.dict[self.history[-1]])))
      / (self.two_turns_after_good_defection_ratio_count + 1)
      )

      two_turns_after_good_defection_ratio_count =
      two_turns_after_good_defection_ratio + 1

    - If it was in state 1 it moves to state 2 and calculates the
      following quantities one_turn_after_good_defection_ratio and
      one_turn_after_good_defection_ratio_count.

      Formula for:

      one_turn_after_good_defection_ratio:

      self.one_turn_after_good_defection_ratio = (
      ((self.one_turn_after_good_defection_ratio
      * self.one_turn_after_good_defection_ratio_count)
      + (3 - (3 * self.dict[opponent.history[-1]]))
      + (2 * self.dict[self.history[-1]])
      - (self.dict[opponent.history[-1]]
      * self.dict[self.history[-1]]))
      / (self.one_turn_after_good_defection_ratio_count + 1)
      )

      one_turn_after_good_defection_ratio_count:

      one_turn_after_good_defection_ratio_count =
      one_turn_after_good_defection_ratio + 1

    If after this it is in state 1 or 2 then it cooperates.

    If it is in state 0 it will potentially perform 1 of the 2
    following stochastic tests:

    1. If average score per turn is greater than 2.25 then it calculates a
    value of probability:

    probability = (
    (.95 - (((self.one_turn_after_good_defection_ratio)
    + (self.two_turns_after_good_defection_ratio) - 5) / 15))
    + (1 / (((len(self.history))+1) ** 2))
    - (self.dict[opponent.history[-1]] / 4)
    )

    and will cooperate if a random sampled number is less than that value of
    probability. If it does not cooperate then the strategy moves to state 1
    and defects.

    2. If average score per turn is greater than 1.75 but less than 2.25
    then it calculates a value of probability:

    probability = (
    (.25 + ((opponent.cooperations + 1) / ((len(self.history)) + 1)))
    - (self.opponent_consecutive_defections * .25)
    + ((current_score[0]
    - current_score[1]) / 100)
    + (4 / ((len(self.history)) + 1))
    )

    and will cooperate if a random sampled number is less than that value of
    probability. If not, it defects.

    If none of the above holds the player simply plays tit for tat.

    Tranquilizer came in 27th place in Axelrod's second torunament.


    Names:

    - Tranquilizer: [Axelrod1980]_
    """

    name = "Second by Tranquilizer"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.num_turns_after_good_defection = 0  # equal to FD variable
        self.opponent_consecutive_defections = 0  # equal to S variable
        self.one_turn_after_good_defection_ratio = 5  # equal to AD variable
        self.two_turns_after_good_defection_ratio = 0  # equal to NO variable
        self.one_turn_after_good_defection_ratio_count = 1  # equal to AK variable
        self.two_turns_after_good_defection_ratio_count = 1  # equal to NK variable
        # All above variables correspond to those in original Fotran Code
        self.dict = {C: 0, D: 1}

[docs]    def update_state(self, opponent):

        """
        Calculates the ratio values for the one_turn_after_good_defection_ratio,
        two_turns_after_good_defection_ratio and the probability values,
        and sets the value of num_turns_after_good_defection.
        """
        if opponent.history[-1] == D:
            self.opponent_consecutive_defections += 1
        else:
            self.opponent_consecutive_defections = 0

        if self.num_turns_after_good_defection == 2:
            self.num_turns_after_good_defection = 0
            self.two_turns_after_good_defection_ratio = (
                (
                    self.two_turns_after_good_defection_ratio
                    * self.two_turns_after_good_defection_ratio_count
                )
                + (3 - (3 * self.dict[opponent.history[-1]]))
                + (2 * self.dict[self.history[-1]])
                - ((self.dict[opponent.history[-1]] * self.dict[self.history[-1]]))
            ) / (self.two_turns_after_good_defection_ratio_count + 1)
            self.two_turns_after_good_defection_ratio_count += 1
        elif self.num_turns_after_good_defection == 1:
            self.num_turns_after_good_defection = 2
            self.one_turn_after_good_defection_ratio = (
                (
                    self.one_turn_after_good_defection_ratio
                    * self.one_turn_after_good_defection_ratio_count
                )
                + (3 - (3 * self.dict[opponent.history[-1]]))
                + (2 * self.dict[self.history[-1]])
                - (self.dict[opponent.history[-1]] * self.dict[self.history[-1]])
            ) / (self.one_turn_after_good_defection_ratio_count + 1)
            self.one_turn_after_good_defection_ratio_count += 1


[docs]    def strategy(self, opponent: Player) -> Action:

        if not self.history:
            return C

        self.update_state(opponent)
        if self.num_turns_after_good_defection in [1, 2]:
            return C

        current_score = compute_final_score(zip(self.history, opponent.history))

        if (current_score[0] / ((len(self.history)) + 1)) >= 2.25:
            probability = (
                (
                    0.95
                    - (
                        (
                            (self.one_turn_after_good_defection_ratio)
                            + (self.two_turns_after_good_defection_ratio)
                            - 5
                        )
                        / 15
                    )
                )
                + (1 / (((len(self.history)) + 1) ** 2))
                - (self.dict[opponent.history[-1]] / 4)
            )
            if self._random.random() <= probability:
                return C
            self.num_turns_after_good_defection = 1
            return D
        if (current_score[0] / ((len(self.history)) + 1)) >= 1.75:
            probability = (
                (0.25 + ((opponent.cooperations + 1) / ((len(self.history)) + 1)))
                - (self.opponent_consecutive_defections * 0.25)
                + ((current_score[0] - current_score[1]) / 100)
                + (4 / ((len(self.history)) + 1))
            )
            if self._random.random() <= probability:
                return C
            return D
        return opponent.history[-1]




[docs]class SecondByGrofman(Player):
    """
    Submitted to Axelrod's second tournament by Bernard Grofman.

    This strategy has 3 phases:

    1. First it cooperates on the first two rounds
    2. For rounds 3-7 inclusive, it plays the same as the opponent's last move
    3. Thereafter, it applies the following logic, looking at its memory of the
       last 8\* rounds (ignoring the most recent round).

      - If its own previous move was C and the opponent has defected less than
        3 times in the last 8\* rounds, cooperate
      - If its own previous move was C and the opponent has defected 3 or
        more times in the last 8\* rounds, defect
      - If its own previous move was D and the opponent has defected only once
        or not at all in the last 8\* rounds, cooperate
      - If its own previous move was D and the opponent has defected more than
        once in the last 8\* rounds, defect

    The code looks at the first 7 of the last 8 rounds, ignoring the most
    recent round.

    Names:
    - Grofman's strategy: [Axelrod1980b]_
    - K86R: [Axelrod1980b]_
    """

    name = "Second by Grofman"
    classifier = {
        "memory_depth": 8,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        # Cooperate on the first two moves
        if len(self.history) < 2:
            return C
        # For rounds 3-7, play the opponent's last move
        elif 2 <= len(self.history) <= 6:
            return opponent.history[-1]
        else:
            # Note: the Fortran code behavior ignores the opponent behavior
            #   in the last round and instead looks at the first 7 of the last
            #   8 rounds.
            opponent_defections_last_8_rounds = opponent.history[-8:-1].count(D)
            if self.history[-1] == C and opponent_defections_last_8_rounds <= 2:
                return C
            if self.history[-1] == D and opponent_defections_last_8_rounds <= 1:
                return C
            return D




[docs]class SecondByKluepfel(Player):
    """
    Strategy submitted to Axelrod's second tournament by Charles Kluepfel
    (K32R).

    This player keeps track of the the opponent's responses to own behavior:

    - `cd_count` counts: Opponent cooperates as response to player defecting.
    - `dd_count` counts: Opponent defects as response to player defecting.
    - `cc_count` counts: Opponent cooperates as response to player cooperating.
    - `dc_count` counts: Opponent defects as response to player cooperating.

    After 26 turns, the player then tries to detect a random player.  The
    player decides that the opponent is random if
    cd_counts >= (cd_counts+dd_counts)/2 - 0.75*sqrt(cd_counts+dd_counts) AND
    cc_counts >= (dc_counts+cc_counts)/2 - 0.75*sqrt(dc_counts+cc_counts).
    If the player decides that they are playing against a random player, then
    they will always defect.

    Otherwise respond to recent history using the following set of rules:

    - If opponent's last three choices are the same, then respond in kind.
    - If opponent's last two choices are the same, then respond in kind with
      probability 90%.
    - Otherwise if opponent's last action was to cooperate, then cooperate
      with probability 70%.
    - Otherwise if opponent's last action was to defect, then defect
      with probability 60%.

    Names:

    - Kluepfel: [Axelrod1980b]_
    """

    name = "Second by Kluepfel"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.cd_counts, self.dd_counts, self.dc_counts, self.cc_counts = 0, 0, 0, 0

[docs]    def strategy(self, opponent: Player) -> Action:
        # First update the response matrix.
        if len(self.history) >= 2:
            if self.history[-2] == D:
                if opponent.history[-1] == C:
                    self.cd_counts += 1
                else:
                    self.dd_counts += 1
            else:
                if opponent.history[-1] == C:
                    self.cc_counts += 1
                else:
                    self.dc_counts += 1

        # Check for randomness
        if len(self.history) > 26:
            if self.cd_counts >= (self.cd_counts + self.dd_counts) / 2 - 0.75 * np.sqrt(
                self.cd_counts + self.dd_counts
            ) and self.dc_counts >= (
                self.dc_counts + self.cc_counts
            ) / 2 - 0.75 * np.sqrt(
                self.dc_counts + self.cc_counts
            ):
                return D

        # Otherwise respond to recent history

        one_move_ago, two_moves_ago, three_moves_ago = C, C, C
        if len(opponent.history) >= 1:
            one_move_ago = opponent.history[-1]
        if len(opponent.history) >= 2:
            two_moves_ago = opponent.history[-2]
        if len(opponent.history) >= 3:
            three_moves_ago = opponent.history[-3]

        if one_move_ago == two_moves_ago and two_moves_ago == three_moves_ago:
            return one_move_ago

        r = self._random.random()  # Everything following is stochastic
        if one_move_ago == two_moves_ago:
            if r < 0.9:
                return one_move_ago
            else:
                return one_move_ago.flip()
        if one_move_ago == C:
            if r < 0.7:
                return one_move_ago
            else:
                return one_move_ago.flip()
        if one_move_ago == D:
            if r < 0.6:
                return one_move_ago
            else:
                return one_move_ago.flip()




[docs]class SecondByBorufsen(Player):
    """
    Strategy submitted to Axelrod's second tournament by Otto Borufsen
    (K32R), and came in third in that tournament.

    This player keeps track of the the opponent's responses to own behavior:

    - `cd_count` counts: Opponent cooperates as response to player defecting.
    - `cc_count` counts: Opponent cooperates as response to player cooperating.

    The player has a defect mode and a normal mode.  In defect mode, the
    player will always defect.  In normal mode, the player obeys the following
    ranked rules:

    1. If in the last three turns, both the player/opponent defected, then
       cooperate for a single turn.
    2. If in the last three turns, the player/opponent acted differently from
       each other and they're alternating, then change next defect to
       cooperate.  (Doesn't block third rule.)
    3. Otherwise, do tit-for-tat.

    Start in normal mode, but every 25 turns starting with the 27th turn,
    re-evaluate the mode.  Enter defect mode if any of the following
    conditions hold:

    - Detected random:  Opponent cooperated 7-18 times since last mode
      evaluation (or start) AND less than 70% of opponent cooperation was in
      response to player's cooperation, i.e.
      cc_count / (cc_count+cd_count) < 0.7
    - Detect defective:  Opponent cooperated fewer than 3 times since last mode
      evaluation.

    When switching to defect mode, defect immediately.  The first two rules for
    normal mode require that last three turns were in normal mode.  When starting
    normal mode from defect mode, defect on first move.

    Names:

    - Borufsen: [Axelrod1980b]_
    """

    name = "Second by Borufsen"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.cd_counts, self.cc_counts = 0, 0
        self.mutual_defect_streak = 0
        self.echo_streak = 0
        self.flip_next_defect = False
        self.mode = "Normal"

[docs]    def try_return(self, to_return):
        """
        We put the logic here to check for the `flip_next_defect` bit here,
        and proceed like normal otherwise.
        """

        if to_return == C:
            return C
        # Otherwise look for flip bit.
        if self.flip_next_defect:
            self.flip_next_defect = False
            return C
        return D


[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1

        if turn == 1:
            return C

        # Update the response history.
        if turn >= 3:
            if opponent.history[-1] == C:
                if self.history[-2] == C:
                    self.cc_counts += 1
                else:
                    self.cd_counts += 1

        # Check if it's time for a mode change.
        if turn > 2 and turn % 25 == 2:
            coming_from_defect = False
            if self.mode == "Defect":
                coming_from_defect = True

            self.mode = "Normal"
            coops = self.cd_counts + self.cc_counts

            # Check for a defective strategy
            if coops < 3:
                self.mode = "Defect"

            # Check for a random strategy
            if (coops >= 8 and coops <= 17) and self.cc_counts / coops < 0.7:
                self.mode = "Defect"

            self.cd_counts, self.cc_counts = 0, 0

            # If defect mode, clear flags
            if self.mode == "Defect":
                self.mutual_defect_streak = 0
                self.echo_streak = 0
                self.flip_next_defect = False

            # Check this special case
            if self.mode == "Normal" and coming_from_defect:
                return D

        # Proceed
        if self.mode == "Defect":
            return D
        else:
            assert self.mode == "Normal"

            # Look for mutual defects
            if self.history[-1] == D and opponent.history[-1] == D:
                self.mutual_defect_streak += 1
            else:
                self.mutual_defect_streak = 0
            if self.mutual_defect_streak >= 3:
                self.mutual_defect_streak = 0
                self.echo_streak = 0  # Reset both streaks.
                return self.try_return(C)

            # Look for echoes
            # Fortran code defaults two turns back to C if only second turn
            my_two_back, opp_two_back = C, C
            if turn >= 3:
                my_two_back = self.history[-2]
                opp_two_back = opponent.history[-2]
            if (
                self.history[-1] != opponent.history[-1]
                and self.history[-1] == opp_two_back
                and opponent.history[-1] == my_two_back
            ):
                self.echo_streak += 1
            else:
                self.echo_streak = 0
            if self.echo_streak >= 3:
                self.mutual_defect_streak = 0  # Reset both streaks.
                self.echo_streak = 0
                self.flip_next_defect = True

            # Tit-for-tat
            return self.try_return(opponent.history[-1])




[docs]class SecondByCave(Player):
    """
    Strategy submitted to Axelrod's second tournament by Rob Cave (K49R), and
    came in fourth in that tournament.

    First look for overly-defective or apparently random opponents, and defect
    if found.  That is any opponent meeting one of:

    - turn > 39 and percent defects > 0.39
    - turn > 29 and percent defects > 0.65
    - turn > 19 and percent defects > 0.79

    Otherwise, respond to cooperation with cooperation.  And respond to defections
    with either a defection (if opponent has defected at least 18 times) or with
    a random (50/50) choice.  [Cooperate on first.]

    Names:

    - Cave: [Axelrod1980b]_
    """

    name = "Second by Cave"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1
        if turn == 1:
            return C

        number_defects = opponent.defections
        perc_defects = number_defects / turn

        # Defect if the opponent has defected often or appears random.
        if turn > 39 and perc_defects > 0.39:
            return D
        if turn > 29 and perc_defects > 0.65:
            return D
        if turn > 19 and perc_defects > 0.79:
            return D

        if opponent.history[-1] == D:
            if number_defects > 17:
                return D
            else:
                return self._random.random_choice(0.5)
        else:
            return C




[docs]class SecondByWmAdams(Player):
    """
    Strategy submitted to Axelrod's second tournament by William Adams (K44R),
    and came in fifth in that tournament.

    Count the number of opponent defections after their first move, call
    `c_defect`.  Defect if c_defect equals 4, 7, or 9.  If c_defect > 9,
    then defect immediately after opponent defects with probability =
    (0.5)^(c_defect-1).  Otherwise cooperate.

    Names:

    - WmAdams: [Axelrod1980b]_
    """

    name = "Second by WmAdams"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) <= 1:
            return C
        number_defects = opponent.defections
        if opponent.history[0] == D:
            number_defects -= 1

        if number_defects in [4, 7, 9]:
            return D
        if number_defects > 9 and opponent.history[-1] == D:
            return self._random.random_choice((0.5) ** (number_defects - 9))
        return C




[docs]class SecondByGraaskampKatzen(Player):
    """
    Strategy submitted to Axelrod's second tournament by Jim Graaskamp and Ken
    Katzen (K60R), and came in sixth in that tournament.

    Play Tit-for-Tat at first, and track own score.  At select checkpoints,
    check for a high score.  Switch to Default Mode if:

    - On move 11, score < 23
    - On move 21, score < 53
    - On move 31, score < 83
    - On move 41, score < 113
    - On move 51, score < 143
    - On move 101, score < 293

    Once in Defect Mode, defect forever.

    Names:

    - GraaskampKatzen: [Axelrod1980b]_
    """

    name = "Second by GraaskampKatzen"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.own_score = 0
        self.mode = "Normal"

    def update_score(self, opponent: Player):
        game = self.match_attributes["game"]
        last_round = (self.history[-1], opponent.history[-1])
        self.own_score += game.score(last_round)[0]

[docs]    def strategy(self, opponent: Player) -> Action:
        if self.mode == "Defect":
            return D

        turn = len(self.history) + 1
        if turn == 1:
            return C

        self.update_score(opponent)

        if (
            turn == 11
            and self.own_score < 23
            or turn == 21
            and self.own_score < 53
            or turn == 31
            and self.own_score < 83
            or turn == 41
            and self.own_score < 113
            or turn == 51
            and self.own_score < 143
            or turn == 101
            and self.own_score < 293
        ):
            self.mode = "Defect"
            return D

        return opponent.history[-1]  # Tit-for-Tat




[docs]class SecondByWeiner(Player):
    """
    Strategy submitted to Axelrod's second tournament by Herb Weiner (K41R),
    and came in seventh in that tournament.

    Play Tit-for-Tat with a chance for forgiveness and a defective override.

    The chance for forgiveness happens only if `forgive_flag` is raised
    (flag discussed below).  If raised and `turn` is greater than `grudge`,
    then override Tit-for-Tat with Cooperation.  `grudge` is a variable that
    starts at 0 and increments 20 with each forgiven Defect (a Defect that is
    overriden through the forgiveness logic).  `forgive_flag` is lower whether
    logic is overriden or not.

    The variable `defect_padding` increments with each opponent Defect, but
    resets to zero with each opponent Cooperate (or `forgive_flag` lowering) so
    that it roughly counts Defects between Cooperates.  Whenever the opponent
    Cooperates, if `defect_padding` (before reseting) is odd, then we raise
    `forgive_flag` for next turn.

    Finally a defective override is assessed after forgiveness.  If five or
    more of the opponent's last twelve actions are Defects, then Defect.  This
    will overrule a forgiveness, but doesn't undo the lowering of
    `forgiveness_flag`.  Note that "last twelve actions" doesn't count the most
    recent action.  Actually the original code updates history after checking
    for defect override.

    Names:

    - Weiner: [Axelrod1980b]_
    """

    name = "Second by Weiner"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.forgive_flag = False
        self.grudge = 0
        self.defect_padding = 0
        self.last_twelve = [0] * 12
        self.lt_index = 0  # Circles around last_twelve

[docs]    def try_return(self, to_return):
        """
        We put the logic here to check for the defective override.
        """

        if np.sum(self.last_twelve) >= 5:
            return D
        return to_return


[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) == 0:
            return C

        # Update history, lag 1.
        if len(opponent.history) >= 2:
            self.last_twelve[self.lt_index] = 0
            if opponent.history[-2] == D:
                self.last_twelve[self.lt_index] = 1
            self.lt_index = (self.lt_index + 1) % 12

        if self.forgive_flag:
            self.forgive_flag = False
            self.defect_padding = 0
            if self.grudge < len(self.history) + 1 and opponent.history[-1] == D:
                # Then override
                self.grudge += 20
                return self.try_return(C)
            else:
                return self.try_return(opponent.history[-1])
        else:
            # See if forgive_flag should be raised
            if opponent.history[-1] == D:
                self.defect_padding += 1
            else:
                if self.defect_padding % 2 == 1:
                    self.forgive_flag = True
                self.defect_padding = 0

            return self.try_return(opponent.history[-1])




[docs]class SecondByHarrington(Player):
    """
    Strategy submitted to Axelrod's second tournament by Paul Harrington (K75R)
    and came in eighth in that tournament.

    This strategy has three modes:  Normal, Fair-weather, and Defect.  These
    mode names were not present in Harrington's submission.

    In Normal and Fair-weather modes, the strategy begins by:

    - Update history
    - Try to detect random opponent if turn is multiple of 15 and >=30.
    - Check if `burned` flag should be raised.
    - Check for Fair-weather opponent if turn is 38.

    Updating history means to increment the correct cell of the `move_history`.
    `move_history` is a matrix where the columns are the opponent's previous
    move and the rows are indexed by the combo of this player's and the
    opponent's moves two turns ago.  [The upper-left cell must be all
    Cooperations, but otherwise order doesn't matter.]  After we enter Defect
    mode, `move_history` won't be used again.

    If the turn is a multiple of 15 and >=30, then attempt to detect random.
    If random is detected, enter Defect mode and defect immediately.  If the
    player was previously in Defect mode, then do not re-enter.  The random
    detection logic is a modified Pearson's Chi Squared test, with some
    additional checks.  [More details in `detect_random` docstrings.]

    Some of this player's moves are marked as "generous."  If this player made
    a generous move two turns ago and the opponent replied with a Defect, then
    raise the `burned` flag.  This will stop certain generous moves later.

    The player mostly plays Tit-for-Tat for the first 36 moves, then defects on
    the 37th move.  If the opponent cooperates on the first 36 moves, and
    defects on the 37th move also, then enter Fair-weather mode and cooperate
    this turn.  Entering Fair-weather mode is extremely rare, since this can
    only happen if the opponent cooperates for the first 36 then defects
    unprovoked on the 37th.  (That is, this player's first 36 moves are also
    Cooperations, so there's nothing really to trigger an opponent Defection.)

    Next in Normal Mode:

    1. Check for defect and parity streaks.
    2. Check if cooperations are scheduled.
    3. Otherwise,

    - If turn < 37, Tit-for-Tat.
    - If turn = 37, defect, mark this move as generous, and schedule two
      more cooperations**.
    - If turn > 37, then if `burned` flag is raised, then Tit-for-Tat.
      Otherwise, Tit-for-Tat with probability 1 - `prob`.  And with
      probability `prob`, defect, schedule two cooperations, mark this move
      as generous, and increase `prob` by 5%.

    ** Scheduling two cooperations means to set `more_coop` flag to two.  If in
    Normal mode and no streaks are detected, then the player will cooperate and
    lower this flag, until hitting zero.  It's possible that the flag can be
    overwritten.  Notable on the 37th turn defect, this is set to two, but the
    38th turn Fair-weather check will set this.

    If the opponent's last twenty moves were defections, then defect this turn.
    Then check for a parity streak, by flipping the parity bit (there are two
    streaks that get tracked which are something like odd and even turns, but
    this flip bit logic doesn't get run every turn), then incrementing the
    parity streak that we're pointing to.  If the parity streak that we're
    pointing to is then greater than `parity_limit` then reset the streak and
    cooperate immediately.  `parity_limit` is initially set to five, but after
    it has been hit eight times, it decreases to three.  The parity streak that
    we're pointing to also gets incremented if in normal mode and we defect but
    not on turn 38, unless we are defecting as the result of a defect streak.
    Note that the parity streaks resets but the defect streak doesn't.

    If `more_coop` >= 1, then we cooperate and lower that flag here, in Normal
    mode after checking streaks.  Still lower this flag if cooperating as the
    result of a parity streak or in Fair-weather mode.

    Then use the logic based on turn from above.

    In Fair-Weather mode after running the code from above, check if opponent
    defected last turn.  If so, exit Fair-Weather mode, and proceed THIS TURN
    with Normal mode.  Otherwise cooperate.

    In Defect mode, update the `exit_defect_meter` (originally zero) by
    incrementing if opponent defected last turn and decreasing by three
    otherwise.  If `exit_defect_meter` is then 11, then set mode to Normal (for
    future turns), cooperate and schedule two more cooperations.  [Note that
    this move is not marked generous.]

    Names:

    - Harrington: [Axelrod1980b]_
    """

    name = "Second by Harrington"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.mode = "Normal"
        self.recorded_defects = 0  # Count opponent defects after turn 1
        self.exit_defect_meter = 0  # When >= 11, then exit defect mode.
        self.coops_in_first_36 = None  # On turn 37, count cooperations in first 36
        self.was_defective = False  # Previously in Defect mode

        self.prob = 0.25  # After turn 37, probability that we'll defect

        self.move_history = np.zeros([4, 2])

        self.more_coop = 0  # This schedules cooperation for future turns
        # Initial last_generous_n_turns_ago to 3 because this counts up and
        # triggers a strategy change at 2.
        self.last_generous_n_turns_ago = 3  # How many tuns ago was a "generous" move
        self.burned = False

        self.defect_streak = 0
        self.parity_streak = [
            0,
            0,
        ]  # Counters that get (almost) alternatively incremented.
        self.parity_bit = 0  # Which parity_streak to increment
        self.parity_limit = 5  # When a parity streak hits this limit, alter strategy.
        self.parity_hits = 0  # Counts how many times a parity_limit was hit.
        # After hitting parity_hits 8 times, lower parity_limit to 3.

[docs]    def try_return(self, to_return, lower_flags=True, inc_parity=False):
        """
        This will return to_return, with some end-of-turn logic.
        """

        if lower_flags and to_return == C:
            # In most cases when Cooperating, we want to reduce the number that
            # are scheduled.
            self.more_coop -= 1
            self.last_generous_n_turns_ago += 1

        if inc_parity and to_return == D:
            # In some cases we increment the `parity_streak` that we're on when
            # we return a Defection.  In detect_parity_streak, `parity_streak`
            # counts opponent's Defections.
            self.parity_streak[self.parity_bit] += 1

        return to_return


[docs]    def calculate_chi_squared(self, turn):
        """
        Pearson's Chi Squared statistic = sum[ (E_i-O_i)^2 / E_i ], where O_i
        are the observed matrix values, and E_i is calculated as number (of
        defects) in the row times the number in the column over (total number
        in the matrix minus 1).  Equivalently, we expect we expect (for an
        independent distribution) the total number of recorded turns times the
        portion in that row times the portion in that column.

        In this function, the statistic is non-standard in that it excludes
        summands where E_i <= 1.
        """

        denom = turn - 2

        expected_matrix = (
            np.outer(self.move_history.sum(axis=1), self.move_history.sum(axis=0))
            / denom
        )

        chi_squared = 0.0
        for i in range(4):
            for j in range(2):
                expect = expected_matrix[i, j]
                if expect > 1.0:
                    chi_squared += (expect - self.move_history[i, j]) ** 2 / expect

        return chi_squared


[docs]    def detect_random(self, turn):
        """
        We check if the top-left cell of the matrix (corresponding to all
        Cooperations) has over 80% of the turns.  In which case, we label
        non-random.

        Then we check if over 75% or under 25% of the opponent's turns are
        Defections.  If so, then we label as non-random.

        Otherwise we calculates a modified Pearson's Chi Squared statistic on
        self.history, and returns True (is random) if and only if the statistic
        is less than or equal to 3.
        """

        denom = turn - 2

        if self.move_history[0, 0] / denom >= 0.8:
            return False
        if self.recorded_defects / denom < 0.25 or self.recorded_defects / denom > 0.75:
            return False

        if self.calculate_chi_squared(turn) > 3:
            return False
        return True


[docs]    def detect_streak(self, last_move):
        """
        Return true if and only if the opponent's last twenty moves are defects.
        """

        if last_move == D:
            self.defect_streak += 1
        else:
            self.defect_streak = 0
        if self.defect_streak >= 20:
            return True
        return False


[docs]    def detect_parity_streak(self, last_move):
        """
        Switch which `parity_streak` we're pointing to and incerement if the
        opponent's last move was a Defection.  Otherwise reset the flag.  Then
        return true if and only if the `parity_streak` is at least
        `parity_limit`.

        This is similar to detect_streak with alternating streaks, except that
        these streaks get incremented elsewhere as well.
        """

        self.parity_bit = 1 - self.parity_bit  # Flip bit
        if last_move == D:
            self.parity_streak[self.parity_bit] += 1
        else:
            self.parity_streak[self.parity_bit] = 0
        if self.parity_streak[self.parity_bit] >= self.parity_limit:
            return True


[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1

        if turn == 1:
            return C

        if self.mode == "Defect":
            # There's a chance to exit Defect mode.
            if opponent.history[-1] == D:
                self.exit_defect_meter += 1
            else:
                self.exit_defect_meter -= 3
            # If opponent has been mostly defecting.
            if self.exit_defect_meter >= 11:
                self.mode = "Normal"
                self.was_defective = True
                self.more_coop = 2
                return self.try_return(to_return=C, lower_flags=False)

            return self.try_return(D)

        # If not Defect mode, proceed to update history and check for random,
        # check if burned, and check if opponent's fairweather.

        # If we haven't yet entered Defect mode
        if not self.was_defective:
            if turn > 2:
                if opponent.history[-1] == D:
                    self.recorded_defects += 1

                # Column decided by opponent's last turn
                history_col = 1 if opponent.history[-1] == D else 0
                # Row is decided by opponent's move two turns ago and our move
                # two turns ago.
                history_row = 1 if opponent.history[-2] == D else 0
                if self.history[-2] == D:
                    history_row += 2
                self.move_history[history_row, history_col] += 1

            # Try to detect random opponent
            if turn % 15 == 0 and turn > 15:
                if self.detect_random(turn):
                    self.mode = "Defect"
                    return self.try_return(
                        D, lower_flags=False
                    )  # Lower_flags not used here.

        # If generous 2 turns ago and opponent defected last turn
        if self.last_generous_n_turns_ago == 2 and opponent.history[-1] == D:
            self.burned = True

        # Only enter Fair-weather mode if the opponent Cooperated the first 37
        # turns then Defected on the 38th.
        if turn == 38 and opponent.history[-1] == D and opponent.cooperations == 36:
            self.mode = "Fair-weather"
            return self.try_return(to_return=C, lower_flags=False)

        if self.mode == "Fair-weather":
            if opponent.history[-1] == D:
                self.mode = "Normal"  # Post-Defect is not possible
                # Proceed with Normal mode this turn.
            else:
                # Never defect against a fair-weather opponent
                return self.try_return(C)

        # Continue with Normal mode

        # Check for streaks
        if self.detect_streak(opponent.history[-1]):
            return self.try_return(D, inc_parity=True)
        if self.detect_parity_streak(opponent.history[-1]):
            self.parity_streak[
                self.parity_bit
            ] = 0  # Reset `parity_streak` when we hit the limit.
            self.parity_hits += 1  # Keep track of how many times we hit the limit.
            if self.parity_hits >= 8:  # After 8 times, lower the limit.
                self.parity_limit = 3
            return self.try_return(
                C, inc_parity=True
            )  # Inc parity won't get used here.

        # If we have Cooperations scheduled, then Cooperate here.
        if self.more_coop >= 1:
            return self.try_return(C, lower_flags=True, inc_parity=True)

        if turn < 37:
            # Tit-for-Tat
            return self.try_return(opponent.history[-1], inc_parity=True)
        if turn == 37:
            # Defect once on turn 37 (if no streaks)
            self.more_coop, self.last_generous_n_turns_ago = 2, 1
            return self.try_return(D, lower_flags=False)
        if self.burned or self._random.random() > self.prob:
            # Tit-for-Tat with probability 1-`prob`
            return self.try_return(opponent.history[-1], inc_parity=True)

        # Otherwise Defect, Cooperate, Cooperate, and increase `prob`
        self.prob += 0.05
        self.more_coop, self.last_generous_n_turns_ago = 2, 1
        return self.try_return(D, lower_flags=False)




[docs]class SecondByTidemanAndChieruzzi(Player):
    """
    Strategy submitted to Axelrod's second tournament by T. Nicolaus Tideman
    and Paula Chieruzzi (K84R) and came in ninth in that tournament.

    This strategy Cooperates if this player's score exceeds the opponent's
    score by at least `score_to_beat`.  `score_to_beat` starts at zero and
    increases by `score_to_beat_inc` every time the opponent's last two moves
    are a Cooperation and Defection in that order.  `score_to_beat_inc` itself
    increase by 5 every time the opponent's last two moves are a Cooperation
    and Defection in that order.

    Additionally, the strategy executes a "fresh start" if the following hold:

    - The strategy would Defect by score (difference less than `score_to_beat`)
    - The opponent did not Cooperate and Defect (in order) in the last two
      turns.
    - It's been at least 10 turns since the last fresh start.  Or since the
      match started if there hasn't been a fresh start yet.

    A "fresh start" entails two Cooperations and resetting scores,
    `scores_to_beat` and `scores_to_beat_inc`.

    Names:

    - TidemanAndChieruzzi: [Axelrod1980b]_
    """

    name = "Second by Tideman and Chieruzzi"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.current_score = 0
        self.opponent_score = 0
        self.last_fresh_start = 0
        self.fresh_start = False
        self.score_to_beat = 0
        self.score_to_beat_inc = 0

    def _fresh_start(self):
        """Give the opponent a fresh start by forgetting the past"""
        self.current_score = 0
        self.opponent_score = 0
        self.score_to_beat = 0
        self.score_to_beat_inc = 0

    def _score_last_round(self, opponent: Player):
        """Updates the scores for each player."""
        # Load the default game if not supplied by a tournament.
        game = self.match_attributes["game"]
        last_round = (self.history[-1], opponent.history[-1])
        scores = game.score(last_round)
        self.current_score += scores[0]
        self.opponent_score += scores[1]

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1

        if current_round == 1:
            return C

        # Calculate the scores.
        self._score_last_round(opponent)

        # Check if we have recently given the strategy a fresh start.
        if self.fresh_start:
            self._fresh_start()
            self.last_fresh_start = current_round
            self.fresh_start = False
            return C  # Second cooperation

        opponent_CDd = False

        opponent_two_turns_ago = C  # Default value for second turn.
        if len(opponent.history) >= 2:
            opponent_two_turns_ago = opponent.history[-2]
        # If opponent's last two turns are C and D in that order.
        if opponent_two_turns_ago == C and opponent.history[-1] == D:
            opponent_CDd = True
            self.score_to_beat += self.score_to_beat_inc
            self.score_to_beat_inc += 5

        # Cooperate if we're beating opponent by at least `score_to_beat`
        if self.current_score - self.opponent_score >= self.score_to_beat:
            return C

        # Wait at least ten turns for another fresh start.
        if (not opponent_CDd) and current_round - self.last_fresh_start >= 10:
            # 50-50 split is based off the binomial distribution.
            N = opponent.cooperations + opponent.defections
            # std_dev = sqrt(N*p*(1-p)) where p is 1 / 2.
            std_deviation = (N ** (1 / 2)) / 2
            lower = N / 2 - 3 * std_deviation
            upper = N / 2 + 3 * std_deviation
            if opponent.defections <= lower or opponent.defections >= upper:
                # Opponent deserves a fresh start
                self.fresh_start = True
                return C  # First cooperation

        return D




[docs]class SecondByGetzler(Player):
    """
    Strategy submitted to Axelrod's second tournament by Abraham Getzler (K35R)
    and came in eleventh in that tournament.

    Strategy Defects with probability `flack`, where `flack` is calculated as
    the sum over opponent Defections of 0.5 ^ (turns ago Defection happened).

    Names:

    - Getzler: [Axelrod1980b]_
    """

    name = "Second by Getzler"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.flack = 0.0  # The relative untrustworthiness of opponent

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return C

        self.flack += 1 if opponent.history[-1] == D else 0
        self.flack *= 0.5  # Defections have half-life of one round

        return self._random.random_choice(1.0 - self.flack)




[docs]class SecondByLeyvraz(Player):
    """
    Strategy submitted to Axelrod's second tournament by Fransois Leyvraz
    (K68R) and came in twelfth in that tournament.

    The strategy uses the opponent's last three moves to decide on an action
    based on the following ordered rules.

    1. If opponent Defected last two turns, then Defect with prob 75%.
    2. If opponent Defected three turns ago, then Cooperate.
    3. If opponent Defected two turns ago, then Defect.
    4. If opponent Defected last turn, then Defect with prob 50%.
    5. Otherwise (all Cooperations), then Cooperate.

    Names:

    - Leyvraz: [Axelrod1980b]_
    """

    name = "Second by Leyvraz"
    classifier = {
        "memory_depth": 3,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.prob_coop = {
            (C, C, C): 1.0,
            (C, C, D): 0.5,  # Rule 4
            (C, D, C): 0.0,  # Rule 3
            (C, D, D): 0.25,  # Rule 1
            (D, C, C): 1.0,  # Rule 2
            (D, C, D): 1.0,  # Rule 2
            (D, D, C): 1.0,  # Rule 2
            (D, D, D): 0.25,  # Rule 1
        }

[docs]    def strategy(self, opponent: Player) -> Action:
        recent_history = [C, C, C]  # Default to C.
        for go_back in range(1, 4):
            if len(opponent.history) >= go_back:
                recent_history[-go_back] = opponent.history[-go_back]

        return self._random.random_choice(
            self.prob_coop[(recent_history[-3], recent_history[-2], recent_history[-1])]
        )




[docs]class SecondByWhite(Player):
    """
    Strategy submitted to Axelrod's second tournament by Edward C White (K72R)
    and came in thirteenth in that tournament.

    * Cooperate in the first ten turns.
    * If the opponent Cooperated last turn then Cooperate.
    * Otherwise Defect if and only if:
        floor(log(turn)) * opponent Defections >= turn

    Names:

    - White: [Axelrod1980b]_
    """

    name = "Second by White"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1

        if turn <= 10 or opponent.history[-1] == C:
            return C

        if np.floor(np.log(turn)) * opponent.defections >= turn:
            return D
        return C




[docs]class SecondByBlack(Player):
    """
    Strategy submitted to Axelrod's second tournament by Paul E Black (K83R)
    and came in fifteenth in that tournament.

    The strategy Cooperates for the first five turns.  Then it calculates the
    number of opponent defects in the last five moves and Cooperates with
    probability `prob_coop`[`number_defects`], where:

    prob_coop[number_defects] = 1 - (number_defects^ 2 - 1) / 25

    Names:

    - Black: [Axelrod1980b]_
    """

    name = "Second by Black"
    classifier = {
        "memory_depth": 5,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        # Maps number of opponent defects from last five moves to own
        # Cooperation probability
        self.prob_coop = {0: 1.0, 1: 1.0, 2: 0.88, 3: 0.68, 4: 0.4, 5: 0.04}

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) < 5:
            return C

        recent_history = opponent.history[-5:]

        did_d = np.vectorize(lambda action: int(action == D))
        number_defects = np.sum(did_d(recent_history))

        return self._random.random_choice(self.prob_coop[number_defects])




[docs]class SecondByRichardHufford(Player):
    """
    Strategy submitted to Axelrod's second tournament by Richard Hufford (K47R)
    and came in sixteenth in that tournament.

    The strategy tracks opponent "agreements", that is whenever the opponent's
    previous move is the some as this player's move two turns ago.  If the
    opponent's first move is a Defection, this is counted as a disagreement,
    and otherwise an agreement.  From the agreement counts, two measures are
    calculated:

    - `proportion_agree`:  This is the number of agreements (through opponent's
      last turn) + 2 divided by the current turn number.
    - `last_four_num`:  The number of agreements in the last four turns.  If
      there have been fewer than four previous turns, then this is number of
      agreement + (4 - number of past turns).

    We then use these measures to decide how to play, using these rules:

    1. If `proportion_agree` > 0.9 and `last_four_num` >= 4, then Cooperate.
    2. Otherwise if `proportion_agree` >= 0.625 and `last_four_num` >= 2, then
       Tit-for-Tat.
    3. Otherwise, Defect.

    However, if the opponent has Cooperated the last `streak_needed` turns,
    then the strategy deviates from the usual strategy, and instead Defects.
    (We call such deviation an "aberration".)  In the turn immediately after an
    aberration, the strategy doesn't override, even if there's a streak of
    Cooperations.  Two turns after an aberration, the strategy:  Restarts the
    Cooperation streak (never looking before this turn); Cooperates; and
    changes `streak_needed` to:

    floor(20.0 * `num_abb_def` / `num_abb_coop`) + 1

    Here `num_abb_def` is 2 + the number of times that the opponent Defected in
    the turn after an aberration, and `num_abb_coop` is 2 + the number of times
    that the opponent Cooperated in response to an aberration.

    Names:

    - RichardHufford: [Axelrod1980b]_
    """

    name = "Second by RichardHufford"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.num_agreements = 2
        self.last_four_agreements = [1] * 4
        self.last_four_index = 0

        self.streak_needed = 21
        self.current_streak = 2
        self.last_aberration = float("inf")
        self.coop_after_ab_count = 2
        self.def_after_ab_count = 2

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1
        if turn == 1:
            return C

        # Check if opponent agreed with us.
        self.last_four_index = (self.last_four_index + 1) % 4
        me_two_moves_ago = C
        if turn > 2:
            me_two_moves_ago = self.history[-2]
        if me_two_moves_ago == opponent.history[-1]:
            self.num_agreements += 1
            self.last_four_agreements[self.last_four_index] = 1
        else:
            self.last_four_agreements[self.last_four_index] = 0

        # Check if last_aberration is infinite.
        # i.e Not an aberration in last two turns.
        if turn < self.last_aberration:
            if opponent.history[-1] == C:
                self.current_streak += 1
            else:
                self.current_streak = 0
            if self.current_streak >= self.streak_needed:
                self.last_aberration = turn
                if self.current_streak == self.streak_needed:
                    return D
        elif turn == self.last_aberration + 2:
            self.last_aberration = float("inf")
            if opponent.history[-1] == C:
                self.coop_after_ab_count += 1
            else:
                self.def_after_ab_count += 1
            self.streak_needed = (
                np.floor(20.0 * self.def_after_ab_count / self.coop_after_ab_count) + 1
            )
            self.current_streak = 0
            return C

        proportion_agree = self.num_agreements / turn
        last_four_num = np.sum(self.last_four_agreements)
        if proportion_agree > 0.9 and last_four_num >= 4:
            return C
        elif proportion_agree >= 0.625 and last_four_num >= 2:
            return opponent.history[-1]
        return D




[docs]class SecondByYamachi(Player):
    """
    Strategy submitted to Axelrod's second tournament by Brian Yamachi (K64R)
    and came in seventeenth in that tournament.

    The strategy keeps track of play history through a variable called
    `count_them_us_them`, which is a dict indexed by (X, Y, Z), where X is an
    opponent's move and Y and Z are the following moves by this player and the
    opponent, respectively.  Each turn, we look at our opponent's move two
    turns ago, call X, and our move last turn, call Y.  If (X, Y, C) has
    occurred more often (or as often) as (X, Y, D), then Cooperate.  Otherwise
    Defect.  [Note that this reflects likelihood of Cooperations or Defections
    in opponent's previous move; we don't update `count_them_us_them` with
    previous move until next turn.]

    Starting with the 41st turn, there's a possibility to override this
    behavior.  If `portion_defect` is between 45% and 55% (exclusive), then
    Defect, where `portion_defect` equals number of opponent defects plus 0.5
    divided by the turn number (indexed by 1).  When overriding this way, still
    record `count_them_us_them` as though the strategy didn't override.

    Names:

    - Yamachi: [Axelrod1980b]_
    """

    name = "Second by Yamachi"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.count_them_us_them = {
            (C, C, C): 0,
            (C, C, D): 0,
            (C, D, C): 0,
            (C, D, D): 0,
            (D, C, C): 0,
            (D, C, D): 0,
            (D, D, C): 0,
            (D, D, D): 0,
        }
        self.mod_history = list()  # type: List[Action]

[docs]    def try_return(self, to_return, opp_def):
        """
        Return `to_return`, unless the turn is greater than 40 AND
        `portion_defect` is between 45% and 55%.

        In this case, still record the history as `to_return` so that the
        modified behavior doesn't affect the calculation of `count_us_them_us`.
        """
        turn = len(self.history) + 1

        self.mod_history.append(to_return)

        # In later turns, check if the opponent is close to 50/50
        # If so, then override
        if turn > 40:
            portion_defect = (opp_def + 0.5) / turn
            if 0.45 < portion_defect and portion_defect < 0.55:
                return D

        return to_return


[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1
        if turn == 1:
            return self.try_return(C, 0)

        us_last = self.mod_history[-1]
        them_two_ago, us_two_ago, them_three_ago = C, C, C
        if turn >= 3:
            them_two_ago = opponent.history[-2]
            us_two_ago = self.mod_history[-2]
        if turn >= 4:
            them_three_ago = opponent.history[-3]

        # Update history
        if turn >= 3:
            self.count_them_us_them[(them_three_ago, us_two_ago, them_two_ago)] += 1

        if (
            self.count_them_us_them[(them_two_ago, us_last, C)]
            >= self.count_them_us_them[(them_two_ago, us_last, D)]
        ):
            return self.try_return(C, opponent.defections)
        return self.try_return(D, opponent.defections)




[docs]class SecondByColbert(FSMPlayer):
    """
    Strategy submitted to Axelrod's second tournament by William Colbert (K51R)
    and came in eighteenth in that tournament.

    In the first eight turns, this strategy Coopearates on all but the sixth
    turn, in which it Defects.  After that, the strategy responds to an
    opponent Cooperation with a single Cooperation, and responds to a Defection
    with a chain of responses:  Defect, Defect, Cooperate, Cooperate.  During
    this chain, the strategy ignores opponent's moves.

    Names:

    - Colbert: [Axelrod1980b]_
    """

    name = "Second by Colbert"
    classifier = {
        "memory_depth": 4,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 1, C),
            (0, D, 1, C),  # First 8 turns are special
            (1, C, 2, C),
            (1, D, 2, C),
            (2, C, 3, C),
            (2, D, 3, C),
            (3, C, 4, C),
            (3, D, 4, C),
            (4, C, 5, D),
            (4, D, 5, D),  # Defect on 6th turn.
            (5, C, 6, C),
            (5, D, 6, C),
            (6, C, 7, C),
            (6, D, 7, C),
            (7, C, 7, C),
            (7, D, 8, D),
            (8, C, 9, D),
            (8, D, 9, D),
            (9, C, 10, C),
            (9, D, 10, C),
            (10, C, 7, C),
            (10, D, 7, C),
        )

        super().__init__(transitions=transitions, initial_state=0, initial_action=C)



[docs]class SecondByMikkelson(FSMPlayer):
    """
    Strategy submitted to Axelrod's second tournament by Ray Mikkelson (K66R)
    and came in twentieth in that tournament.

    The strategy keeps track of a variable called `credit`, which determines if
    the strategy will Cooperate, in the sense that if `credit` is positive,
    then the strategy Cooperates.  `credit` is initialized to 7.  After the
    first turn, `credit` increments if the opponent Cooperated last turn, and
    decreases by two otherwise.  `credit` is capped above by 8 and below by -7.
    [`credit` is assessed as postive or negative, after increasing based on
    opponent's last turn.]

    If `credit` is non-positive within the first ten turns, then the strategy
    Defects and `credit` is set to 4.  If `credit` is non-positive later, then
    the strategy Defects if and only if (total # opponent Defections) / (turn#)
    is at least 15%.  [Turn # starts at 1.]

    Names:

    - Mikkelson: [Axelrod1980b]_
    """

    name = "Second by Mikkelson"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.credit = 7

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1
        if turn == 1:
            return C

        if opponent.history[-1] == C:
            self.credit += 1
            if self.credit > 8:
                self.credit = 8
        else:
            self.credit -= 2
            if self.credit < -7:
                self.credit = -7

        if turn == 2:
            return C
        if self.credit > 0:
            return C
        if turn <= 10:
            self.credit = 4
            return D
        if opponent.defections / turn >= 0.15:
            return D
        return C




[docs]class SecondByRowsam(Player):
    """
    Strategy submitted to Axelrod's second tournament by Glen Rowsam (K58R)
    and came in 21st in that tournament.

    The strategy starts in Normal mode, where it cooperates every turn.  Every
    six turns it checks the score per turn.  [Rather the score of all previous
    turns divided by the turn number, which will be one more than the number of
    turns scored.]  If this measure is less than 2.5 (the strategy is doing
    badly) and it increases `distrust_points`.  `distrust_points` is a variable
    that starts at 0; if it ever exceeds 6 points, the strategy will enter
    Defect mode and defect from then on.  It will increase `distrust_points`
    depending on the precise score per turn according to:

    - 5 points if score per turn is less than 1.0
    - 3 points if score per turn is less than 1.5, but at least 1.0
    - 2 points if score per turn is less than 2.0, but at least 1.5
    - 1 points if score per turn is less than 2.5, but at least 2.0

    If `distrust_points` are increased, then the strategy defects on that turn,
    then cooperates and defects on the next two turns.  [Unless
    `distrust_points` exceeds 6 points, then it will enter Defect mode
    immediately.]

    Every 18 turns in Normal mode, the strategy will decrement `distrust_score`
    if it's more than 3.  This represents a wearing off effect of distrust.


    Names:

    - Rowsam: [Axelrod1980b]_
    """

    name = "Second by Rowsam"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.mode = "Normal"
        self.distrust_points = 0
        self.current_score = 0
        self.opponent_score = 0

    def _score_last_round(self, opponent: Player):
        """Updates the scores for each player."""
        game = self.match_attributes["game"]
        last_round = (self.history[-1], opponent.history[-1])
        scores = game.score(last_round)
        self.current_score += scores[0]
        self.opponent_score += scores[1]

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1
        if turn > 1:
            self._score_last_round(opponent)

        if self.mode == "Defect":
            return D

        if self.mode == "Coop Def Cycle 1":
            self.mode = "Coop Def Cycle 2"
            return C

        if self.mode == "Coop Def Cycle 2":
            self.mode = "Normal"
            return D

        # Opportunity for distrust to cool off.
        if turn % 18 == 0:
            if self.distrust_points >= 3:
                self.distrust_points -= 1

        # In normal mode, only check for strategy updates every sixth turn.
        if turn % 6 != 0:
            return C

        points_per_turn = self.current_score / turn  # Off by one
        if points_per_turn < 1.0:
            self.distrust_points += 5
        elif points_per_turn < 1.5:
            self.distrust_points += 3
        elif points_per_turn < 2.0:
            self.distrust_points += 2
        elif points_per_turn < 2.5:
            self.distrust_points += 1
        else:
            # Continue Cooperating
            return C

        if self.distrust_points >= 7:
            self.mode = "Defect"
        else:
            # Def this time, then coop, then def.
            self.mode = "Coop Def Cycle 1"
        return D




[docs]class SecondByAppold(Player):
    """
    Strategy submitted to Axelrod's second tournament by Scott Appold (K88R) and
    came in 22nd in that tournament.

    Cooperates for first four turns.

    After four turns, will cooperate immediately following the first time the
    opponent cooperates (starting with the opponent's fourth move).  Otherwise
    will cooperate with probability equal to:

    - If this strategy defected two turns ago, the portion of the time
      (historically) that the opponent followed a defection with a cooperation.
    - If this strategy cooperated two turns ago, the portion of the time
      (historically) that the opponent followed a cooperation with a cooperation.
      The opponent's first move is counted as a response to a cooperation.


    Names:

    - Appold: [Axelrod1980b]_
    """

    name = "Second by Appold"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()

        # Probability of a cooperation after an x is:
        # opp_c_after_x / total_num_of_x.
        self.opp_c_after_x = {C: 0, D: 1}
        # This is the total counted, so it doesn't include the most recent.
        self.total_num_of_x = {C: 0, D: 1}

        self.first_opp_def = False

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history) + 1

        us_two_turns_ago = C if turn <= 2 else self.history[-2]

        # Update trackers
        if turn > 1:
            self.total_num_of_x[us_two_turns_ago] += 1
        if turn > 1 and opponent.history[-1] == C:
            self.opp_c_after_x[us_two_turns_ago] += 1

        if turn <= 4:
            return C

        if opponent.history[-1] == D and not self.first_opp_def:
            self.first_opp_def = True
            return C

        # Calculate the probability that the opponent cooperated last turn given
        # what we know two turns ago.
        prob_coop = self.opp_c_after_x[us_two_turns_ago] / self.total_num_of_x[
            us_two_turns_ago]
        return self._random.random_choice(prob_coop)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.backstabber

from axelrod.action import Action
from axelrod.player import Player
from axelrod.strategy_transformers import FinalTransformer

C, D = Action.C, Action.D


[docs]@FinalTransformer((D, D), name_prefix=None)  # End with two defections
class BackStabber(Player):
    """
    Forgives the first 3 defections but on the fourth
    will defect forever. Defects on the last 2 rounds unconditionally.

    Names:

    - Backstabber: Original name by Thomas Campbell
    """

    name = "BackStabber"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def strategy(self, opponent: Player) -> Action:
        return _backstabber_strategy(opponent)



[docs]@FinalTransformer((D, D), name_prefix=None)  # End with two defections
class DoubleCrosser(Player):
    """
    Forgives the first 3 defections but on the fourth
    will defect forever. Defects on the last 2 rounds unconditionally.

    If 8 <= current round <= 180,
    if the opponent did not defect in the first 7 rounds,
    the player will only defect after the opponent has defected twice in-a-row.

    Names:

    - Double Crosser: Original name by Thomas Campbell
    """

    name = "DoubleCrosser"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def strategy(self, opponent: Player) -> Action:
        if _opponent_triggers_alt_strategy(opponent):
            return _alt_strategy(opponent)
        return _backstabber_strategy(opponent)



def _backstabber_strategy(opponent: Player) -> Action:
    """
    Cooperates until opponent defects a total of four times, then always
    defects.
    """
    if not opponent.history:
        return C
    if opponent.defections > 3:
        return D
    return C


def _alt_strategy(opponent: Player) -> Action:
    """
    If opponent's previous two plays were defect, then defects on next round.
    Otherwise, cooperates.
    """
    previous_two_plays = opponent.history[-2:]
    if previous_two_plays == [D, D]:
        return D
    return C


def _opponent_triggers_alt_strategy(opponent: Player) -> bool:
    """
    If opponent did not defect in first 7 rounds and the current round is from 8
    to 180, return True. Else, return False.
    """
    before_alt_strategy = first_n_rounds = 7
    last_round_of_alt_strategy = 180
    if _opponent_defected_in_first_n_rounds(opponent, first_n_rounds):
        return False
    current_round = len(opponent.history) + 1
    return before_alt_strategy < current_round <= last_round_of_alt_strategy


def _opponent_defected_in_first_n_rounds(opponent: Player, first_n_rounds: int) -> bool:
    """
    If opponent defected in the first N rounds, return True. Else return False.
    """
    return D in opponent.history[:first_n_rounds]




          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.better_and_better

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class BetterAndBetter(Player):
    """
    Defects with probability of '(1000 - current turn) / 1000'.
    Therefore it is less and less likely to defect as the round goes on.

    Names:
        - Better and Better: [Prison1998]_

    """

    name = "Better and Better"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1
        probability = current_round / 1000
        return self._random.random_choice(probability)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.bush_mosteller

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class BushMosteller(Player):
    """
    A player that is based on Bush Mosteller reinforced learning algorithm, it
    decides what it will
    play only depending on its own previous payoffs.

    The probability of playing C or D will be updated using a stimulus which
    represents a win or a loss of value based on its previous play's payoff in
    the specified probability.  The more a play will be rewarded through rounds,
    the more the player will be tempted to use it.

    Names:

    - Bush Mosteller: [Luis2008]_
    """

    name = "Bush Mosteller"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        c_prob: float = 0.5,
        d_prob: float = 0.5,
        aspiration_level_divider: float = 3.0,
        learning_rate: float = 0.5,
    ) -> None:
        """
        Parameters

        c_prob: float, 0.5
           Probability to play C , is modified during the match
        d_prob: float, 0.5
           Probability to play D , is modified during the match
        aspiration_level_divider: float, 3.0
            Value that regulates the aspiration level,
            isn't modified during match
        learning rate [0 , 1]
            Percentage of learning speed
        Variables / Constants
        stimulus (Var: [-1 , 1]): float
            Value that impacts the changes of action probability
        _aspiration_level: float
            Value that impacts the stimulus changes, isn't modified during match
        _init_c_prob , _init_d_prob : float
            Values used to properly set up reset(),
            set to original probabilities
        """
        super().__init__()
        self._c_prob, self._d_prob = c_prob, d_prob
        self._init_c_prob, self._init_d_prob = c_prob, d_prob
        self._aspiration_level = abs(
            (max(self.match_attributes["game"].RPST()) / aspiration_level_divider)
        )

        self._stimulus = 0.0
        self._learning_rate = learning_rate

[docs]    def stimulus_update(self, opponent: Player):
        """
        Updates the stimulus attribute based on the opponent's history. Used by
        the strategy.

        Parameters

        opponent : axelrod.Player
            The current opponent
        """
        game = self.match_attributes["game"]

        last_round = (self.history[-1], opponent.history[-1])

        scores = game.score(last_round)

        previous_play = scores[0]

        self._stimulus = (previous_play - self._aspiration_level) / abs(
            (max(self.match_attributes["game"].RPST()) - self._aspiration_level)
        )
        # Lowest range for stimulus
        # Highest doesn't need to be tested since it is divided by the highest
        # reward possible
        if self._stimulus < -1:
            self._stimulus = -1

        # Updates probability following previous choice C
        if self.history[-1] == C:

            if self._stimulus >= 0:
                self._c_prob += (
                    self._learning_rate * self._stimulus * (1 - self._c_prob)
                )

            elif self._stimulus < 0:
                self._c_prob += self._learning_rate * self._stimulus * self._c_prob

        # Updates probability following previous choice D
        if self.history[-1] == D:
            if self._stimulus >= 0:
                self._d_prob += (
                    self._learning_rate * self._stimulus * (1 - self._d_prob)
                )

            elif self._stimulus < 0:
                self._d_prob += self._learning_rate * self._stimulus * self._d_prob


[docs]    def strategy(self, opponent: Player) -> Action:

        # First turn
        if len(self.history) == 0:
            return self._random.random_choice(self._c_prob / (self._c_prob + self._d_prob))

        # Updating stimulus depending on his own latest choice
        self.stimulus_update(opponent)

        return self._random.random_choice(self._c_prob / (self._c_prob + self._d_prob))






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.calculator

from axelrod._strategy_utils import detect_cycle
from axelrod.action import Action
from axelrod.player import Player

from .axelrod_first import FirstByJoss as Joss

C, D = Action.C, Action.D


[docs]class Calculator(Player):
    """
    Plays like (Hard) Joss for the first 20 rounds. If periodic behavior is
    detected, defect forever. Otherwise play TFT.


    Names:

    - Calculator: [Prison1998]_
    """

    name = "Calculator"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        self.joss_instance = Joss()
        super().__init__()

[docs]    def set_seed(self, seed: int = None):
        super().set_seed(seed)
        self.joss_instance.set_seed(seed)


[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn > 0:
            self.joss_instance.history.append(self.history[-1],
                                              opponent.history[-1])
        if turn == 20:
            self.cycle = detect_cycle(opponent.history)
            return self.extended_strategy(opponent)
        if turn > 20:
            return self.extended_strategy(opponent)
        else:
            play = self.joss_instance.strategy(opponent)
            return play


    def extended_strategy(self, opponent: Player) -> Action:
        if self.cycle:
            return D
        else:
            # TFT
            return D if opponent.history[-1:] == [D] else C





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.cooperator

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Cooperator(Player):
    """A player who only ever cooperates.

    Names:

    - Cooperator: [Axelrod1984]_
    - ALLC: [Press2012]_
    - Always cooperate: [Mittal2009]_
    """

    name = "Cooperator"
    classifier = {
        "memory_depth": 0,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return C




[docs]class TrickyCooperator(Player):
    """
    A cooperator that is trying to be tricky.

    Names:

    - Tricky Cooperator: Original name by Karol Langner
    """

    name = "Tricky Cooperator"
    classifier = {
        "memory_depth": 10,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    _min_history_required_to_try_trickiness = 3
    _max_history_depth_for_trickiness = -10

[docs]    def strategy(self, opponent: Player) -> Action:
        """Almost always cooperates, but will try to trick the opponent by
        defecting.

        Defect once in a while in order to get a better payout.
        After 3 rounds, if opponent has not defected to a max history depth of
        10, defect.
        """
        if self._has_played_enough_rounds_to_be_tricky() and self._opponents_has_cooperated_enough_to_be_tricky(
            opponent
        ):
            return D
        return C


    def _has_played_enough_rounds_to_be_tricky(self):
        return len(self.history) >= self._min_history_required_to_try_trickiness

    def _opponents_has_cooperated_enough_to_be_tricky(self, opponent):
        rounds_to_be_checked = opponent.history[
            self._max_history_depth_for_trickiness :
        ]
        return D not in rounds_to_be_checked





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.cycler

import copy
import itertools
from typing import List, Tuple

from axelrod.action import Action, actions_to_str, str_to_actions
from axelrod.evolvable_player import (
    EvolvablePlayer,
    InsufficientParametersError,
    crossover_lists,
)
from axelrod.player import Player

C, D = Action.C, Action.D
actions = (C, D)


[docs]class AntiCycler(Player):
    """
    A player that follows a sequence of plays that contains no cycles:
    CDD  CD  CCD CCCD CCCCD ...

    Names:

    - Anti Cycler: Original name by Marc Harper
    """

    name = "AntiCycler"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.cycle_length = 1
        self.cycle_counter = 0
        self.first_three = self._get_first_three()

    @staticmethod
    def _get_first_three() -> List[Action]:
        return [C, D, D]

[docs]    def strategy(self, opponent: Player) -> Action:
        while self.first_three:
            return self.first_three.pop(0)
        if self.cycle_counter < self.cycle_length:
            self.cycle_counter += 1
            return C
        else:
            self.cycle_length += 1
            self.cycle_counter = 0
            return D




[docs]class Cycler(Player):
    """
    A player that repeats a given sequence indefinitely.

    Names:

    - Cycler: Original name by Marc Harper
    """

    name = "Cycler"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, cycle: str = "CCD") -> None:
        """This strategy will repeat the parameter `cycle` endlessly,
        e.g. C C D C C D C C D ...

        Special Cases
        -------------
        Cooperator is equivalent to Cycler("C")
        Defector   is equivalent to Cycler("D")
        Alternator is equivalent to Cycler("CD")

        """
        Player.__init__(self)
        self.cycle = cycle
        self.set_cycle(cycle=cycle)

[docs]    def strategy(self, opponent: Player) -> Action:
        return next(self.cycle_iter)


[docs]    def set_cycle(self, cycle: str):
        """Set or change the cycle."""
        self.cycle = cycle
        self.cycle_iter = itertools.cycle(str_to_actions(self.cycle))
        self.classifier["memory_depth"] = len(cycle) - 1




[docs]class EvolvableCycler(Cycler, EvolvablePlayer):
    """Evolvable version of Cycler."""

    name = "EvolvableCycler"

    def __init__(
        self,
        cycle: str = None,
        cycle_length: int = None,
        mutation_probability: float = 0.2,
        mutation_potency: int = 1,
        seed: int = None
    ) -> None:
        EvolvablePlayer.__init__(self, seed=seed)
        cycle, cycle_length = self._normalize_parameters(cycle, cycle_length)
        Cycler.__init__(self, cycle=cycle)
        # Overwrite init_kwargs in the case that we generated a new cycle from cycle_length
        self.overwrite_init_kwargs(
            cycle=cycle,
            cycle_length=cycle_length)
        self.mutation_probability = mutation_probability
        self.mutation_potency = mutation_potency

    def _normalize_parameters(self, cycle=None, cycle_length=None) -> Tuple[str, int]:
        """Compute other parameters from those that may be missing, to ensure proper cloning."""
        if not cycle:
            if not cycle_length:
                raise InsufficientParametersError("Insufficient Parameters to instantiate EvolvableCycler")
            cycle = self._generate_random_cycle(cycle_length)
        cycle_length = len(cycle)
        return cycle, cycle_length

    def _generate_random_cycle(self, cycle_length: int) -> str:
        """
        Generate a sequence of random moves
        """
        return actions_to_str(self._random.choice(actions) for _ in range(cycle_length))

[docs]    def mutate(self) -> EvolvablePlayer:
        """
        Basic mutation which may change any random actions in the sequence.
        """
        if self._random.random() <= self.mutation_probability:
            mutated_sequence = list(str_to_actions(self.cycle))
            for _ in range(self.mutation_potency):
                index_to_change = self._random.randint(0, len(mutated_sequence) - 1)
                mutated_sequence[index_to_change] = mutated_sequence[index_to_change].flip()
            cycle = actions_to_str(mutated_sequence)
        else:
            cycle = self.cycle
        cycle, _ = self._normalize_parameters(cycle)
        return self.create_new(cycle=cycle)


[docs]    def crossover(self, other) -> EvolvablePlayer:
        """
        Creates and returns a new Player instance with a single crossover point.
        """
        if other.__class__ != self.__class__:
            raise TypeError("Crossover must be between the same player classes.")
        cycle_list = crossover_lists(self.cycle, other.cycle, self._random)
        cycle = "".join(cycle_list)
        cycle, _ = self._normalize_parameters(cycle)
        return self.create_new(cycle=cycle, seed=self._random.random_seed_int())




[docs]class CyclerDC(Cycler):
    """
    Cycles D, C

    Names:

    - Cycler DC: Original name by Marc Harper
    """

    name = "Cycler DC"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 1

    def __init__(self) -> None:
        super().__init__(cycle="DC")



[docs]class CyclerCCD(Cycler):
    """
    Cycles C, C, D

    Names:

    - Cycler CCD: Original name by Marc Harper
    - Periodic player CCD: [Mittal2009]_
    """

    name = "Cycler CCD"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 2

    def __init__(self) -> None:
        super().__init__(cycle="CCD")



[docs]class CyclerDDC(Cycler):
    """
    Cycles D, D, C

    Names:

    - Cycler DDC: Original name by Marc Harper
    - Periodic player DDC: [Mittal2009]_
    """

    name = "Cycler DDC"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 2

    def __init__(self) -> None:
        super().__init__(cycle="DDC")



[docs]class CyclerCCCD(Cycler):
    """
    Cycles C, C, C, D

    Names:

    - Cycler CCCD: Original name by Marc Harper
    """

    name = "Cycler CCCD"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 3

    def __init__(self) -> None:
        super().__init__(cycle="CCCD")



[docs]class CyclerCCCCCD(Cycler):
    """
    Cycles C, C, C, C, C, D

    Names:

    - Cycler CCCD: Original name by Marc Harper
    """

    name = "Cycler CCCCCD"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 5

    def __init__(self) -> None:
        super().__init__(cycle="CCCCCD")



[docs]class CyclerCCCDCD(Cycler):
    """
    Cycles C, C, C, D, C, D

    Names:

    - Cycler CCCDCD: Original name by Marc Harper
    """

    name = "Cycler CCCDCD"
    classifier = copy.copy(Cycler.classifier)
    classifier["memory_depth"] = 5

    def __init__(self) -> None:
        super().__init__(cycle="CCCDCD")





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.darwin

"""
The player class in this module does not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising it.
"""
from typing import Optional

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Darwin(Player):
    """
    A strategy which accumulates a record (the 'genome') of what the most
    favourable response in the previous round should have been, and naively
    assumes that this will remain the correct response at the same round of
    future trials.

    This 'genome' is preserved between opponents, rounds and repetitions of
    the tournament.  It becomes a characteristic of the type and so a single
    version of this is shared by all instances for each loading of the class.

    As this results in information being preserved between tournaments, this
    is classified as a cheating strategy!

    If no record yet exists, the opponent's response from the previous round
    is returned.

    Names:

    - Darwin: Original name by Paul Slavin
    """

    name = "Darwin"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "inspects_source": True,  # Checks to see if opponent is using simulated matches.
        "long_run_time": False,
        "manipulates_source": False,
        "manipulates_state": True,  # Does not reset properly.
    }

    genome = [C]
    valid_callers = ["play"]  # What functions may invoke our strategy.

    def __init__(self) -> None:
        self.outcomes = None  # type: Optional[dict]
        self.response = Darwin.genome[0]
        super().__init__()

    def receive_match_attributes(self):
        self.outcomes = self.match_attributes["game"].scores

[docs]    @staticmethod
    def foil_strategy_inspection() -> Action:
        """Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead"""
        return C


[docs]    def strategy(self, opponent: Player) -> Action:
        trial = len(self.history)

        if trial > 0:
            assert self.outcomes is not None
            outcome = self.outcomes[(self.history[-1], opponent.history[-1])]
            self.mutate(outcome, trial)
            # Update genome with selected response
            Darwin.genome[trial - 1] = self.response

        if trial < len(Darwin.genome):
            # Return response from genome where available...
            current = Darwin.genome[trial]
        else:
            # ...otherwise use Tit-for-Tat
            Darwin.genome.append(opponent.history[-1])
            current = opponent.history[-1]

        return current


[docs]    def reset(self):
        """ Reset instance properties. """
        super().reset()
        Darwin.genome[0] = C  # Ensure initial Cooperate


[docs]    def mutate(self, outcome: tuple, trial: int) -> None:
        """ Select response according to outcome. """
        if outcome[0] < 3 and (len(Darwin.genome) >= trial):
            self.response = D if Darwin.genome[trial - 1] == C else C


[docs]    @staticmethod
    def reset_genome() -> None:
        """For use in testing methods."""
        Darwin.genome = [C]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.dbs

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class DBS(Player):
    """
    A strategy that learns the opponent's strategy and uses symbolic noise
    detection for detecting whether anomalies in player’s behavior are
    deliberate or accidental. From the learned opponent's strategy, a tree
    search is used to choose the best move.

    Default values for the parameters are the suggested values in the article.
    When noise increases you can try to diminish violation_threshold and
    rejection_threshold.

    Names

    - Derived Belief Strategy: [Au2006]_
    """

    # These are various properties for the strategy
    name = "DBS"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        discount_factor=0.75,
        promotion_threshold=3,
        violation_threshold=4,
        reject_threshold=3,
        tree_depth=5,
    ):
        """
        Parameters

        discount_factor: float, optional
            Used when computing discounted frequencies to learn opponent's
            strategy. Must be between 0 and 1. The default is 0.75.
        promotion_threshold: int, optional
            Number of successive observations needed to promote an opponent
            behavior as a deterministic rule. The default is 3.
        violation_threshold: int, optional
            Number of observations needed to considerate opponent's strategy has
            changed. You can lower it when noise increases. The default is 4,
            which is good for a noise level of .1.
        reject_threshold: int, optional
            Number of observations before forgetting opponent's previous
            strategy. You can lower it when noise increases. The default is 3,
             which is good for a noise level of .1.
        tree_depth: int, optional
            Depth of the tree for the tree-search algorithm. Higher depth means
            more time to compute the move. The default is 5.
        """
        super().__init__()

        # The opponent's behavior is represented by a 3 dicts: Rd, Rc, and Rp.
        # Its behavior is modeled by a set of rules. A rule is the move that
        # the opponent will play (C or D or a probability to play C) after a
        # given outcome (for instance after (C, D)).
        # A rule can be deterministic or probabilistic:
        # - Rc is the set of deterministic rules
        # - Rp is the set of probabilistic rules
        # - Rd is the default rule set which is used for initialization but also
        # keeps track of previous policies when change in the opponent behavior
        # happens, in order to have a smooth transition.
        # - Pi is a set of rules that aggregates all above sets of rules in
        # order to fully model the opponent's behavior.

        # Default rule set is Rd.
        # Default opponent's policy is TitForTat.
        self.Rd = create_policy(1, 1, 0, 0)
        # Set of current deterministic rules Rc
        self.Rc = {}
        # Aggregated rule set Pi
        self.Pi = self.Rd
        # For each rule in Rd we need to count the number of successive
        # violations. Those counts are saved in violation_counts.
        self.violation_counts = {}
        self.reject_threshold = reject_threshold
        self.violation_threshold = violation_threshold
        self.promotion_threshold = promotion_threshold
        self.tree_depth = tree_depth
        # v is a violation count used to know when to clean the default rule
        # set Rd
        self.v = 0
        # A discount factor for computing the probabilistic rules
        self.alpha = discount_factor

        # The probabilistic rule set Rp is not saved as an attribute, but each
        # rule is computed only when needed. The rules are computed as
        # discounted frequencies of opponent's past moves. To compute the
        # discounted frequencies, we need to keep up to date an history of what
        # has been played following each outcome (or condition):
        # We save it as a dict history_by_cond; keys are conditions
        # (ex (C, C)) and values are a tuple of 2 lists (G, F)
        # for a condition j and an iteration i in the match:
        # G[i] = 1 if cond j was True at turn i-1 and C has been played
        # by the opponent; else G[i] = 0
        # F[i] = 1 if cond j was True at turn i-1; else F[i] = 0
        # This representation makes the computing of discounted frequencies
        # easy and efficient.
        # The initial hypothesized policy is TitForTat.
        self.history_by_cond = {
            (C, C): ([1], [1]),
            (C, D): ([1], [1]),
            (D, C): ([0], [1]),
            (D, D): ([0], [1]),
        }

[docs]    def should_promote(self, r_plus, promotion_threshold=3):
        """
        This function determines if the move r_plus is a deterministic
        behavior of the opponent, and then returns True, or if r_plus
        is due to a random behavior (or noise) which would require a
        probabilistic rule, in which case it returns False.

        To do so it looks into the game history: if the k last times
        when the opponent was in the same situation than in r_plus it
        played the same thing then then r_plus is considered as a
        deterministic rule (where K is the user-defined promotion_threshold).

        Parameters

        r_plus: tuple of (tuple of actions.Action, actions.Action)
            example: ((C, C), D)
            r_plus represents one outcome of the history, and the
            following move played by the opponent.
        promotion_threshold: int, optional
            Number of successive observations needed to promote an
            opponent behavior as a deterministic rule. Default is 3.
        """
        if r_plus[1] == C:
            opposite_action = 0
        elif r_plus[1] == D:
            opposite_action = 1
        k = 1
        count = 0
        # We iterate on the history, while we do not encounter
        # counter-examples of r_plus, i.e. while we do not encounter
        # r_minus
        while k < len(self.history_by_cond[r_plus[0]][0]) and not (
            self.history_by_cond[r_plus[0]][0][1:][-k] == opposite_action
            and self.history_by_cond[r_plus[0]][1][1:][-k] == 1
        ):
            # We count every occurrence of r_plus in history
            if self.history_by_cond[r_plus[0]][1][1:][-k] == 1:
                count += 1
            k += 1
        if count >= promotion_threshold:
            return True
        return False


[docs]    def should_demote(self, r_minus, violation_threshold=4):
        """
        Checks if the number of successive violations of a deterministic
        rule (in the opponent's behavior) exceeds the user-defined
        violation_threshold.
        """
        return self.violation_counts[r_minus[0]] >= violation_threshold


[docs]    def update_history_by_cond(self, opponent_history):
        """
        Updates self.history_by_cond between each turns of the game.
        """
        two_moves_ago = (self.history[-2], opponent_history[-2])
        for outcome, GF in self.history_by_cond.items():
            G, F = GF
            if outcome == two_moves_ago:
                if opponent_history[-1] == C:
                    G.append(1)
                else:
                    G.append(0)
                F.append(1)
            else:
                G.append(0)
                F.append(0)


[docs]    def compute_prob_rule(self, outcome, alpha=1):
        """
        Uses the game history to compute the probability of the opponent
        playing C, in the outcome situation (example: outcome = (C, C)).
        When alpha = 1, the results is approximately equal to the frequency of
        the occurrence of outcome C. alpha is a discount factor that gives more
        weight to recent events than earlier ones.

        Parameters

        outcome: tuple of two actions.Action
        alpha: int, optional. Discount factor. Default is 1.
        """
        G = self.history_by_cond[outcome][0]
        F = self.history_by_cond[outcome][1]
        discounted_g = 0
        discounted_f = 0
        alpha_k = 1
        for g, f in zip(G[::-1], F[::-1]):
            discounted_g += alpha_k * g
            discounted_f += alpha_k * f
            alpha_k = alpha * alpha_k
        p_cond = discounted_g / discounted_f
        return p_cond


[docs]    def strategy(self, opponent: Player) -> Action:
        # First move
        if not self.history:
            return C
        if len(opponent.history) >= 2:
            # We begin by update history_by_cond (i.e. update Rp)
            self.update_history_by_cond(opponent.history)
            two_moves_ago = (self.history[-2], opponent.history[-2])
            # r_plus is the information of what the opponent just played,
            # following the previous outcome two_moves_ago.
            r_plus = (two_moves_ago, opponent.history[-1])
            # r_minus is the opposite move, following the same outcome.
            r_minus = (two_moves_ago, ({C, D} - {opponent.history[-1]}).pop())

            # If r_plus and r_minus are not in the current set of deterministic
            # rules, we check if r_plus should be added to it (following the
            # rule defined in the should_promote function).
            if r_plus[0] not in self.Rc.keys():
                if self.should_promote(r_plus, self.promotion_threshold):
                    self.Rc[r_plus[0]] = action_to_int(r_plus[1])
                    self.violation_counts[r_plus[0]] = 0
                    self.violation_counts[r_plus[0]] = 0

            # If r+ or r- in Rc
            if r_plus[0] in self.Rc.keys():
                to_check = C if self.Rc[r_plus[0]] == 1 else D
                # (if r+ in Rc)
                if r_plus[1] == to_check:
                    # Set the violation count of r+ to 0.
                    self.violation_counts[r_plus[0]] = 0
                # if r- in Rc
                elif r_minus[1] == to_check:
                    # Increment violation count of r-.
                    self.violation_counts[r_plus[0]] += 1
                    # As we observe that the behavior of the opponent is
                    # opposed to a rule modeled in Rc, we check if the number
                    # of consecutive violations of this rule is superior to
                    # a threshold. If it is, we clean Rc, but we keep the rules
                    # of Rc in Rd for smooth transition.
                    if self.should_demote(r_minus, self.violation_threshold):
                        self.Rd.update(self.Rc)
                        self.Rc.clear()
                        self.violation_counts.clear()
                        self.v = 0
            # r+ in Rc.
            r_plus_in_Rc = r_plus[0] in self.Rc.keys() and self.Rc[
                r_plus[0]
            ] == action_to_int(r_plus[1])
            # r- in Rd
            r_minus_in_Rd = r_minus[0] in self.Rd.keys() and self.Rd[
                r_minus[0]
            ] == action_to_int(r_minus[1])

            # Increment number of violations of Rd rules.
            if r_minus_in_Rd:
                self.v += 1
            # If the number of violations is superior to a threshold, clean Rd.
            if (self.v > self.reject_threshold) or (r_plus_in_Rc and r_minus_in_Rd):
                self.Rd.clear()
                self.v = 0

            # Compute Rp for conditions that are neither in Rc or Rd.
            Rp = {}
            all_cond = [(C, C), (C, D), (D, C), (D, D)]
            for outcome in all_cond:
                if (outcome not in self.Rc.keys()) and (outcome not in self.Rd.keys()):
                    # Compute opponent's C answer probability.
                    Rp[outcome] = self.compute_prob_rule(outcome, self.alpha)

            # We aggregate the rules of Rc, Rd, and Rp in a set of rule Pi.
            self.Pi = {}
            # The algorithm makes sure that a rule cannot be in two different
            # sets of rules so we do not need to check for duplicates.
            self.Pi.update(self.Rc)
            self.Pi.update(self.Rd)
            self.Pi.update(Rp)

        # React to the opponent's last move
        return move_gen(
            (self.history[-1], opponent.history[-1]),
            self.Pi,
            depth_search_tree=self.tree_depth,
        )




[docs]class Node(object):
    """
    Nodes used to build a tree for the tree-search procedure. The tree has
    Deterministic and Stochastic nodes, as the opponent's strategy is learned
    as a probability distribution.
    """

    # abstract method
    def get_siblings(self):
        raise NotImplementedError("subclasses must override get_siblings()!")

    # abstract method
    def is_stochastic(self):
        raise NotImplementedError("subclasses must override is_stochastic()!")



[docs]class StochasticNode(Node):
    """
    Node that have a probability pC to get to each sibling. A StochasticNode can
    be written (C, X) or (D, X), with X = C with a probability pC, else X = D.
    """

    def __init__(self, own_action, pC, depth):
        self.pC = pC
        self.depth = depth
        self.own_action = own_action

[docs]    def get_siblings(self):
        """
        Returns the siblings node of the current StochasticNode. There are two
        siblings which are DeterministicNodes, their depth is equal to current
        node depth's + 1.
        """
        opponent_c_choice = DeterministicNode(self.own_action, C, self.depth + 1)
        opponent_d_choice = DeterministicNode(self.own_action, D, self.depth + 1)
        return opponent_c_choice, opponent_d_choice


[docs]    def is_stochastic(self):
        """Returns True if self is a StochasticNode."""
        return True




[docs]class DeterministicNode(Node):
    """
    Nodes (C, C), (C, D), (D, C), or (D, D) with deterministic choice
    for siblings.
    """

    def __init__(self, action1, action2, depth):
        self.action1 = action1
        self.action2 = action2
        self.depth = depth

[docs]    def get_siblings(self, policy):
        """
        Returns the siblings node of the current DeterministicNode. Builds 2
        siblings (C, X) and (D, X) that are StochasticNodes. Those siblings are
        of the same depth as the current node. Their probabilities pC are
        defined by the policy argument.
        """
        c_choice = StochasticNode(C, policy[(self.action1, self.action2)], self.depth)
        d_choice = StochasticNode(D, policy[(self.action1, self.action2)], self.depth)
        return c_choice, d_choice


[docs]    def is_stochastic(self):
        """Returns True if self is a StochasticNode."""
        return False


    def get_value(self):
        values = {(C, C): 3, (C, D): 0, (D, C): 5, (D, D): 1}
        return values[(self.action1, self.action2)]



[docs]def create_policy(pCC, pCD, pDC, pDD):
    """
    Creates a dict that represents a Policy. As defined in the reference, a
    Policy is a set of (prev_move, p) where p is the probability to cooperate
    after prev_move, where prev_move can be (C, C), (C, D), (D, C) or (D, D).

    Parameters

    pCC, pCD, pDC, pDD : float
        Must be between 0 and 1.
    """
    return {(C, C): pCC, (C, D): pCD, (D, C): pDC, (D, D): pDD}



def action_to_int(action):
    if action == C:
        return 1
    return 0


[docs]def minimax_tree_search(begin_node, policy, max_depth):
    """
    Tree search function (minimax search procedure) for the tree (built by
    recursion) corresponding to the opponent's policy, and solves it.
    Returns a tuple of two floats that are the utility of playing C, and the
    utility of playing D.
    """
    if begin_node.is_stochastic():
        # A stochastic node cannot have the same depth than its parent node
        # hence there is no need to check that its depth is < max_depth.
        siblings = begin_node.get_siblings()
        # The stochastic node value is the expected value of siblings.
        node_value = begin_node.pC * minimax_tree_search(
            siblings[0], policy, max_depth
        ) + (1 - begin_node.pC) * minimax_tree_search(siblings[1], policy, max_depth)
        return node_value
    else:  # Deterministic node
        if begin_node.depth == max_depth:
            # This is an end node, we just return its outcome value.
            return begin_node.get_value()
        elif begin_node.depth == 0:
            siblings = begin_node.get_siblings(policy)
            # This returns the two max expected values, for choice C or D,
            # as a tuple.
            return (
                minimax_tree_search(siblings[0], policy, max_depth)
                + begin_node.get_value(),
                minimax_tree_search(siblings[1], policy, max_depth)
                + begin_node.get_value(),
            )
        elif begin_node.depth < max_depth:
            siblings = begin_node.get_siblings(policy)
            # The deterministic node value is the max of both siblings values
            # + the score of the outcome of the node.
            a = minimax_tree_search(siblings[0], policy, max_depth)
            b = minimax_tree_search(siblings[1], policy, max_depth)
            node_value = max(a, b) + begin_node.get_value()
            return node_value



[docs]def move_gen(outcome, policy, depth_search_tree=5):
    """
    Returns the best move considering opponent's policy and last move,
    using tree-search procedure.
    """
    current_node = DeterministicNode(outcome[0], outcome[1], depth=0)
    values_of_choices = minimax_tree_search(current_node, policy, depth_search_tree)
    # Returns the Action which correspond to the best choice in terms of
    # expected value. In case value(C) == value(D), returns C.
    actions_tuple = (C, D)
    return actions_tuple[values_of_choices.index(max(values_of_choices))]





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.defector

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Defector(Player):
    """A player who only ever defects.

    Names:

    - Defector: [Axelrod1984]_
    - ALLD: [Press2012]_
    - Always defect: [Mittal2009]_
    """

    name = "Defector"
    classifier = {
        "memory_depth": 0,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return D




[docs]class TrickyDefector(Player):
    """A defector that is trying to be tricky.

    Names:

    - Tricky Defector: Original name by Karol Langner
    """

    name = "Tricky Defector"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """Almost always defects, but will try to trick the opponent into
        cooperating.

        Defect if opponent has cooperated at least once in the past and has
        defected for the last 3 turns in a row.
        """
        if opponent.history.cooperations > 0 and opponent.history[-3:] == [D] * 3:
            return C
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.doubler

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Doubler(Player):
    """
    Cooperates except when the opponent has defected and
    the opponent's cooperation count is less than twice their defection count.

    Names:

    - Doubler: [Prison1998]_
    """

    name = "Doubler"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return C
        if (
            opponent.history[-1] == D
            and opponent.cooperations <= opponent.defections * 2
        ):
            return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.finite_state_machines

import itertools
from typing import Any, Dict, List, Sequence, Text, Tuple

from axelrod.action import Action
from axelrod.evolvable_player import (
    EvolvablePlayer,
    InsufficientParametersError,
    copy_lists,
)
from axelrod.player import Player

C, D = Action.C, Action.D
actions = (C, D)
Transition = Tuple[int, Action, int, Action]


[docs]class SimpleFSM(object):
    """Simple implementation of a finite state machine that transitions
    between states based on the last round of play.

    https://en.wikipedia.org/wiki/Finite-state_machine
    """

    def __init__(self, transitions: tuple, initial_state: int) -> None:
        """
        transitions is a list of the form
        ((state, last_opponent_action, next_state, next_action), ...)

        TitForTat would be represented with the following table:
        ((1, C, 1, C), (1, D, 1, D))
        with initial play C and initial state 1.

        """
        self._state = initial_state
        self._state_transitions = {
            (current_state, input_action): (next_state, output_action)
            for current_state, input_action, next_state, output_action in transitions
        }  # type: dict

        self._raise_error_for_bad_input()

    def _raise_error_for_bad_input(self):
        callable_states = set(
            pair[0] for pair in self._state_transitions.values()
        )
        callable_states.add(self._state)
        for state in callable_states:
            self._raise_error_for_bad_state(state)

    def _raise_error_for_bad_state(self, state: int):
        if (state, C) not in self._state_transitions or (
            state,
            D,
        ) not in self._state_transitions:
            raise ValueError(
                "state: {} does not have values for both C and D".format(state)
            )

    @property
    def state(self) -> int:
        return self._state

    @state.setter
    def state(self, new_state: int):
        self._raise_error_for_bad_state(new_state)
        self._state = new_state

    @property
    def state_transitions(self) -> dict:
        return self._state_transitions.copy()

    def transitions(self) -> list:
        return [[x[0], x[1], y[0], y[1]] for x, y in self._state_transitions.items()]

[docs]    def move(self, opponent_action: Action) -> Action:
        """Computes the response move and changes state."""
        next_state, next_action = self._state_transitions[
            (self._state, opponent_action)
        ]
        self._state = next_state
        return next_action


    def __eq__(self, other) -> bool:
        """Equality of two FSMs"""
        if not isinstance(other, SimpleFSM):
            return False
        return (self._state, self._state_transitions) == (
            other.state,
            other.state_transitions,
        )

[docs]    def num_states(self):
        """Return the number of states of the machine."""
        return len(set(state for state, action in self._state_transitions))




[docs]class FSMPlayer(Player):
    """Abstract base class for finite state machine players."""

    name = "FSM Player"

    classifier: Dict[Text, Any] = {
        "memory_depth": 1,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        transitions: Tuple[Transition, ...] = ((1, C, 1, C), (1, D, 1, D)),
        initial_state: int = 1,
        initial_action: Action = C
    ) -> None:
        Player.__init__(self)
        self.initial_state = initial_state
        self.initial_action = initial_action
        self.fsm = SimpleFSM(transitions, initial_state)

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return self.initial_action
        else:
            return self.fsm.move(opponent.history[-1])




[docs]class EvolvableFSMPlayer(FSMPlayer, EvolvablePlayer):
    """Abstract base class for evolvable finite state machine players."""

    name = "EvolvableFSMPlayer"

    classifier = {
        "memory_depth": 1,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        transitions: tuple = None,
        initial_state: int = None,
        initial_action: Action = None,
        num_states: int = None,
        mutation_probability: float = 0.1,
        seed: int = None
    ) -> None:
        """If transitions, initial_state, and initial_action are None
        then generate random parameters using num_states."""
        EvolvablePlayer.__init__(self, seed=seed)
        transitions, initial_state, initial_action, num_states = self._normalize_parameters(
            transitions, initial_state, initial_action, num_states)
        FSMPlayer.__init__(
            self,
            transitions=transitions,
            initial_state=initial_state,
            initial_action=initial_action)
        self.mutation_probability = mutation_probability
        self.overwrite_init_kwargs(
            transitions=transitions,
            initial_state=initial_state,
            initial_action=initial_action,
            num_states=self.num_states)

[docs]    @classmethod
    def normalize_transitions(cls, transitions: Sequence[Sequence]) -> Tuple[Tuple[Any, ...], ...]:
        """Translate a list of lists to a tuple of tuples."""
        normalized = []
        for t in transitions:
            normalized.append(tuple(t))
        return tuple(normalized)


    def _normalize_parameters(self, transitions: Tuple = None, initial_state: int = None, initial_action: Action = None,
                              num_states: int = None) -> Tuple[Tuple, int, Action, int]:
        if not ((transitions is not None) and (initial_state is not None) and (initial_action is not None)):
            if not num_states:
                raise InsufficientParametersError("Insufficient Parameters to instantiate EvolvableFSMPlayer")
            transitions, initial_state, initial_action = self.random_params(num_states)
        transitions = self.normalize_transitions(transitions)
        num_states = len(transitions) // 2
        return transitions, initial_state, initial_action, num_states

    @property
    def num_states(self) -> int:
        return self.fsm.num_states()

    def random_params(self, num_states: int) -> Tuple[Tuple[Transition, ...], int, Action]:
        rows = []
        for j in range(num_states):
            for action in actions:
                next_state = self._random.randint(num_states)
                next_action = self._random.choice(actions)
                row = (j, action, next_state, next_action)
                rows.append(row)
        initial_state = self._random.randint(0, num_states)
        initial_action = self._random.choice(actions)
        return tuple(rows), initial_state, initial_action

    def mutate_rows(self, rows: List[List], mutation_probability: float):
        rows = list(rows)
        randoms = self._random.random(len(rows))
        # Flip each value with a probability proportional to the mutation rate
        for i, row in enumerate(rows):
            if randoms[i] < mutation_probability:
                row[3] = row[3].flip()
        # Swap Two Nodes?
        if self._random.random() < 0.5:
            nodes = len(rows) // 2
            n1 = self._random.randint(0, nodes)
            n2 = self._random.randint(0, nodes)
            for j, row in enumerate(rows):
                if row[0] == n1:
                    row[0] = n2
                elif row[0] == n2:
                    row[0] = n1
            rows.sort(key=lambda x: (x[0], 0 if x[1] == C else 1))
        return rows

[docs]    def mutate(self):
        initial_action = self.initial_action
        if self._random.random() < self.mutation_probability / 10:
            initial_action = self.initial_action.flip()
        initial_state = self.initial_state
        if self._random.random() < self.mutation_probability / (10 * self.num_states):
            initial_state = self._random.randint(0, self.num_states)
        try:
            transitions = self.mutate_rows(self.fsm.transitions(), self.mutation_probability)
            self.fsm = SimpleFSM(transitions, self.initial_state)
        except ValueError:
            # If the FSM is malformed, try again.
            return self.mutate()
        return self.create_new(
            transitions=transitions,
            initial_state=initial_state,
            initial_action=initial_action,
        )


    def crossover_rows(self, rows1: List[List], rows2: List[List]) -> List[List]:
        num_states = len(rows1) // 2
        cross_point = 2 * self._random.randint(0, num_states)
        new_rows = copy_lists(rows1[:cross_point])
        new_rows += copy_lists(rows2[cross_point:])
        return new_rows

[docs]    def crossover(self, other):
        if other.__class__ != self.__class__:
            raise TypeError("Crossover must be between the same player classes.")
        transitions = self.crossover_rows(self.fsm.transitions(), other.fsm.transitions())
        transitions = self.normalize_transitions(transitions)
        return self.create_new(transitions=transitions)


[docs]    def receive_vector(self, vector):
        """
        Read a serialized vector into the set of FSM parameters (less initial
        state).  Then assign those FSM parameters to this class instance.

        The vector has three parts. The first is used to define the next state
        (for each of the player's states - for each opponents action).

        The second part is the player's next moves (for each state - for
        each opponent's actions).

        Finally, a probability to determine the player's first move.
        """
        num_states = self.fsm.num_states()
        state_scale = vector[:num_states * 2]
        next_states = [int(s * (num_states - 1)) for s in state_scale]
        actions = vector[num_states * 2: -1]

        self.initial_action = C if round(vector[-1]) == 0 else D
        self.initial_state = 1

        transitions = []
        for i, (initial_state, action) in enumerate(itertools.product(range(num_states), [C, D])):
            next_action = C if round(actions[i]) == 0 else D
            transitions.append([initial_state, action, next_states[i], next_action])
        transitions = self.normalize_transitions(transitions)
        self.fsm = SimpleFSM(transitions, self.initial_state)
        self.overwrite_init_kwargs(transitions=transitions,
                                   initial_state=self.initial_state,
                                   initial_action=self.initial_action)


[docs]    def create_vector_bounds(self):
        """Creates the bounds for the decision variables."""
        size = len(self.fsm.transitions()) * 2 + 1
        lb = [0] * size
        ub = [1] * size
        return lb, ub




[docs]class Fortress3(FSMPlayer):
    """Finite state machine player specified in http://DOI.org/10.1109/CEC.2006.1688322.

    Note that the description in http://www.graham-kendall.com/papers/lhk2011.pdf
    is not correct.


    Names:

    - Fortress 3: [Ashlock2006b]_
    """

    name = "Fortress3"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (1, C, 1, D),
            (1, D, 2, D),
            (2, C, 1, D),
            (2, D, 3, C),
            (3, C, 3, C),
            (3, D, 1, D),
        )

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class Fortress4(FSMPlayer):
    """
    Finite state machine player specified in
    http://DOI.org/10.1109/CEC.2006.1688322.

    Note that the description in
    http://www.graham-kendall.com/papers/lhk2011.pdf is not correct.

    Names:

    - Fortress 4: [Ashlock2006b]_
    """

    name = "Fortress4"
    classifier = {
        "memory_depth": 3,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (1, C, 1, D),
            (1, D, 2, D),
            (2, C, 1, D),
            (2, D, 3, D),
            (3, C, 1, D),
            (3, D, 4, C),
            (4, C, 4, C),
            (4, D, 1, D),
        )

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class Predator(FSMPlayer):
    """
    Finite state machine player specified in
    http://DOI.org/10.1109/CEC.2006.1688322.

    Names:

    - Predator: [Ashlock2006b]_
    """

    name = "Predator"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 0, D),
            (0, D, 1, D),
            (1, C, 2, D),
            (1, D, 3, D),
            (2, C, 4, C),
            (2, D, 3, D),
            (3, C, 5, D),
            (3, D, 4, C),
            (4, C, 2, C),
            (4, D, 6, D),
            (5, C, 7, D),
            (5, D, 3, D),
            (6, C, 7, C),
            (6, D, 7, D),
            (7, C, 8, D),
            (7, D, 7, D),
            (8, C, 8, D),
            (8, D, 6, D),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



[docs]class Pun1(FSMPlayer):
    """FSM player described in [Ashlock2006]_.

    Names:

    - Pun1: [Ashlock2006]_
    """

    name = "Pun1"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = ((1, C, 2, C), (1, D, 2, C), (2, C, 1, C), (2, D, 1, D))

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class Raider(FSMPlayer):
    """
    FSM player described in http://DOI.org/10.1109/FOCI.2014.7007818.


    Names

    - Raider: [Ashlock2014]_
    """

    name = "Raider"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 2, D),
            (0, D, 2, D),
            (1, C, 1, C),
            (1, D, 1, D),
            (2, C, 0, D),
            (2, D, 3, C),
            (3, C, 0, D),
            (3, D, 1, C),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=D
        )



[docs]class Ripoff(FSMPlayer):
    """
    FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

    Names

    - Ripoff: [Ashlock2008]_
    """

    name = "Ripoff"
    classifier = {
        "memory_depth": 3,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (1, C, 2, C),
            (1, D, 3, C),
            (2, C, 1, D),
            (2, D, 3, C),
            (3, C, 3, C),  # Note that it's TFT in state 3
            (3, D, 3, D),
        )

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class UsuallyCooperates(FSMPlayer):
    """
    This strategy cooperates except after a C following a D.

    Names:

    - Usually Cooperates (UC): [Ashlock2009]_
    """

    name = "UsuallyCooperates"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = ((1, C, 1, C), (1, D, 2, C), (2, C, 1, D), (2, D, 1, C))

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=C
        )



[docs]class UsuallyDefects(FSMPlayer):
    """
    This strategy defects except after a D following a C.

    Names:

    - Usually Defects (UD): [Ashlock2009]_
    """

    name = "UsuallyDefects"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = ((1, C, 2, D), (1, D, 1, D), (2, C, 1, D), (2, D, 1, C))

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class SolutionB1(FSMPlayer):
    """
    FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

    Names

    - Solution B1: [Ashlock2015]_
    """

    name = "SolutionB1"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (1, C, 2, D),
            (1, D, 1, D),
            (2, C, 2, C),
            (2, D, 3, C),
            (3, C, 3, C),
            (3, D, 3, C),
        )

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class SolutionB5(FSMPlayer):
    """

    FSM player described in http://DOI.org/10.1109/TCIAIG.2014.2326012.

    Names

    - Solution B5: [Ashlock2015]_
    """

    name = "SolutionB5"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (1, C, 2, C),
            (1, D, 6, D),
            (2, C, 2, C),
            (2, D, 3, D),
            (3, C, 6, C),
            (3, D, 1, D),
            (4, C, 3, C),
            (4, D, 6, D),
            (5, C, 5, D),
            (5, D, 4, D),
            (6, C, 3, C),
            (6, D, 5, D),
        )

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=D
        )



[docs]class Thumper(FSMPlayer):
    """
    FSM player described in http://DOI.org/10.1109/TEVC.2008.920675.

    Names

    - Thumper: [Ashlock2008]_
    """

    name = "Thumper"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = ((1, C, 1, C), (1, D, 2, D), (2, C, 1, D), (2, D, 1, D))

        super().__init__(
            transitions=transitions, initial_state=1, initial_action=C
        )



[docs]class EvolvedFSM4(FSMPlayer):
    """
    A 4 state FSM player trained with an evolutionary algorithm.

    Names:

        - Evolved FSM 4: Original name by Marc Harper
    """

    name = "Evolved FSM 4"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 0, C),
            (0, D, 2, D),
            (1, C, 3, D),
            (1, D, 0, C),
            (2, C, 2, D),
            (2, D, 1, C),
            (3, C, 3, D),
            (3, D, 1, D),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



[docs]class EvolvedFSM16(FSMPlayer):
    """
    A 16 state FSM player trained with an evolutionary algorithm.

    Names:

        - Evolved FSM 16: Original name by Marc Harper

    """

    name = "Evolved FSM 16"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 0, C),
            (0, D, 12, D),
            (1, C, 3, D),
            (1, D, 6, C),
            (2, C, 2, D),
            (2, D, 14, D),
            (3, C, 3, D),
            (3, D, 3, D),
            (5, C, 12, D),
            (5, D, 10, D),
            (6, C, 5, C),
            (6, D, 12, D),
            (7, C, 3, D),
            (7, D, 1, C),
            (8, C, 5, C),
            (8, D, 5, C),
            (10, C, 11, D),
            (10, D, 8, C),
            (11, C, 15, D),
            (11, D, 5, D),
            (12, C, 8, C),
            (12, D, 11, D),
            (13, C, 13, D),
            (13, D, 7, D),
            (14, C, 13, D),
            (14, D, 13, D),
            (15, C, 15, D),
            (15, D, 2, C),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



[docs]class EvolvedFSM16Noise05(FSMPlayer):
    """
    A 16 state FSM player trained with an evolutionary algorithm with
    noisy matches (noise=0.05).

    Names:

        - Evolved FSM 16 Noise 05: Original name by Marc Harper
    """

    name = "Evolved FSM 16 Noise 05"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 8, C),
            (0, D, 3, D),
            (1, C, 13, C),
            (1, D, 15, D),
            (2, C, 12, C),
            (2, D, 3, D),
            (3, C, 10, C),
            (3, D, 3, D),
            (4, C, 5, D),
            (4, D, 4, D),
            (5, C, 4, D),
            (5, D, 10, D),
            (6, C, 8, C),
            (6, D, 6, D),
            (8, C, 2, C),
            (8, D, 4, D),
            (10, C, 4, D),
            (10, D, 1, D),
            (11, C, 14, D),
            (11, D, 13, C),
            (12, C, 13, C),
            (12, D, 2, C),
            (13, C, 13, C),
            (13, D, 6, C),
            (14, C, 3, D),
            (14, D, 13, D),
            (15, C, 5, D),
            (15, D, 11, C),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



# Strategies trained with Moran process objectives


[docs]class TF1(FSMPlayer):
    """
    A FSM player trained to maximize Moran fixation probabilities.

    Names:

        - TF1: Original name by Marc Harper
    """

    name = "TF1"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 7, C),
            (0, D, 1, C),
            (1, C, 11, D),
            (1, D, 11, D),
            (2, C, 8, D),
            (2, D, 8, C),
            (3, C, 3, C),
            (3, D, 12, D),
            (4, C, 6, C),
            (4, D, 3, C),
            (5, C, 11, C),
            (5, D, 8, D),
            (6, C, 13, D),
            (6, D, 14, C),
            (7, C, 4, D),
            (7, D, 2, D),
            (8, C, 14, D),
            (8, D, 8, D),
            (9, C, 0, C),
            (9, D, 10, D),
            (10, C, 8, C),
            (10, D, 15, C),
            (11, C, 6, D),
            (11, D, 5, D),
            (12, C, 6, D),
            (12, D, 9, D),
            (13, C, 9, D),
            (13, D, 8, D),
            (14, C, 8, D),
            (14, D, 13, D),
            (15, C, 4, C),
            (15, D, 5, C),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



[docs]class TF2(FSMPlayer):
    """
    A FSM player trained to maximize Moran fixation probabilities.

    Names:

        - TF2: Original name by Marc Harper
    """

    name = "TF2"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 13, D),
            (0, D, 12, D),
            (1, C, 3, D),
            (1, D, 4, D),
            (2, C, 14, D),
            (2, D, 9, D),
            (3, C, 0, C),
            (3, D, 1, D),
            (4, C, 1, D),
            (4, D, 2, D),
            (7, C, 12, D),
            (7, D, 2, D),
            (8, C, 7, D),
            (8, D, 9, D),
            (9, C, 8, D),
            (9, D, 0, D),
            (10, C, 2, C),
            (10, D, 15, C),
            (11, C, 7, D),
            (11, D, 13, D),
            (12, C, 3, C),
            (12, D, 8, D),
            (13, C, 7, C),
            (13, D, 10, D),
            (14, C, 10, D),
            (14, D, 7, D),
            (15, C, 15, C),
            (15, D, 11, D),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )



[docs]class TF3(FSMPlayer):
    """
    A FSM player trained to maximize Moran fixation probabilities.

    Names:

        - TF3: Original name by Marc Harper
    """

    name = "TF3"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        transitions = (
            (0, C, 0, C),
            (0, D, 3, C),
            (1, C, 5, D),
            (1, D, 0, C),
            (2, C, 3, C),
            (2, D, 2, D),
            (3, C, 4, D),
            (3, D, 6, D),
            (4, C, 3, C),
            (4, D, 1, D),
            (5, C, 6, C),
            (5, D, 3, D),
            (6, C, 6, D),
            (6, D, 6, D),
            (7, C, 7, D),
            (7, D, 5, C),
        )

        super().__init__(
            transitions=transitions, initial_state=0, initial_action=C
        )





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.forgiver

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Forgiver(Player):
    """
    A player starts by cooperating however will defect if at any point
    the opponent has defected more than 10 percent of the time

    Names:

    - Forgiver: Original name by Thomas Campbell
    """

    name = "Forgiver"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Begins by playing C, then plays D if the opponent has defected more
        than 10 percent of the time.
        """
        if opponent.defections > len(opponent.history) / 10.0:
            return D
        return C




[docs]class ForgivingTitForTat(Player):
    """
    A player starts by cooperating however will defect if at any point, the
    opponent has defected more than 10 percent of the time, and their most
    recent decision was defect.

    Names:

    - Forgiving Tit For Tat: Original name by Thomas Campbell
    """

    name = "Forgiving Tit For Tat"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Begins by playing C, then plays D if the opponent has defected more than
        10 percent of the time and their most recent decision was defect.
        """
        if opponent.defections > len(opponent.history) / 10:
            return opponent.history[-1]
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.gambler

"""Stochastic variants of Lookup table based-strategies, trained with particle
swarm algorithms.

For the original see:
 https://gist.github.com/GDKO/60c3d0fd423598f3c4e4
"""
from typing import Any

from axelrod.action import Action, actions_to_str, str_to_actions
from axelrod.load_data_ import load_pso_tables
from axelrod.player import Player

from .lookerup import (
    EvolvableLookerUp,
    LookerUp,
    LookupTable,
    Plays,
    create_lookup_table_keys,
)

C, D = Action.C, Action.D
tables = load_pso_tables("pso_gambler.csv", directory="data")


[docs]class Gambler(LookerUp):
    """
    A stochastic version of LookerUp which will select randomly an action in
    some cases.

    Names:

    - Gambler: Original name by Georgios Koutsovoulos
    """

    name = "Gambler"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        actions_or_float = super(Gambler, self).strategy(opponent)
        if isinstance(actions_or_float, Action):
            return actions_or_float
        return self._random.random_choice(actions_or_float)




[docs]class EvolvableGambler(Gambler, EvolvableLookerUp):
    name = "EvolvableGambler"

    def __init__(
        self,
        lookup_dict: dict = None,
        initial_actions: tuple = None,
        pattern: Any = None,  # pattern is str or tuple of Actions.
        parameters: Plays = None,
        mutation_probability: float = None,
        seed: int = None
    ) -> None:
        EvolvableLookerUp.__init__(
            self,
            lookup_dict=lookup_dict,
            initial_actions=initial_actions,
            pattern=pattern,
            parameters=parameters,
            mutation_probability=mutation_probability,
            seed=seed
        )
        self.pattern = list(self.pattern)
        Gambler.__init__(
            self,
            lookup_dict=self.lookup_dict,
            initial_actions=self.initial_actions,
            pattern=self.pattern,
            parameters=self.parameters
        )
        self.overwrite_init_kwargs(
            lookup_dict=self.lookup_dict,
            initial_actions=self.initial_actions,
            pattern=self.pattern,
            parameters=self.parameters,
            mutation_probability=self.mutation_probability,
        )

    # The mutate and crossover methods are mostly inherited from EvolvableLookerUp, except for the following
    # modifications.

    def random_value(self) -> float:
        return self._random.random()

    def mutate_value(self, value: float) -> float:
        ep = self._random.uniform(-1, 1) / 4
        value += ep
        if value < 0:
            value = 0
        elif value > 1:
            value = 1
        return value

[docs]    def receive_vector(self, vector):
        """Receives a vector and updates the player's pattern. Ignores extra parameters."""
        self.pattern = vector
        self_depth, op_depth, op_openings_depth = self.parameters
        self._lookup = LookupTable.from_pattern(self.pattern, self_depth, op_depth, op_openings_depth)


[docs]    def create_vector_bounds(self):
        """Creates the bounds for the decision variables. Ignores extra parameters."""
        size = len(self.pattern)
        lb = [0.0] * size
        ub = [1.0] * size
        return lb, ub




[docs]class PSOGamblerMem1(Gambler):
    """
    A 1x1x0 PSOGambler trained with pyswarm. This is the 'optimal' memory one
    strategy trained against the set of short run time strategies in the
    Axelrod library.

    Names:

    - PSO Gambler Mem1: Original name by Marc Harper
    """

    name = "PSO Gambler Mem1"

    def __init__(self) -> None:
        pattern = tables[("PSO Gambler Mem1", 1, 1, 0)]
        parameters = Plays(self_plays=1, op_plays=1, op_openings=0)

        super().__init__(parameters=parameters, pattern=pattern)



[docs]class PSOGambler1_1_1(Gambler):
    """
    A 1x1x1 PSOGambler trained with pyswarm.

    Names:

    - PSO Gambler 1_1_1: Original name by Marc Harper
    """

    name = "PSO Gambler 1_1_1"

    def __init__(self) -> None:
        pattern = tables[("PSO Gambler 1_1_1", 1, 1, 1)]
        parameters = Plays(self_plays=1, op_plays=1, op_openings=1)

        super().__init__(parameters=parameters, pattern=pattern)



[docs]class PSOGambler2_2_2(Gambler):
    """
    A 2x2x2 PSOGambler trained with a particle swarm algorithm (implemented in
    pyswarm). Original version by Georgios Koutsovoulos.

    Names:

    - PSO Gambler 2_2_2: Original name by Marc Harper
    """

    name = "PSO Gambler 2_2_2"

    def __init__(self) -> None:
        pattern = tables[("PSO Gambler 2_2_2", 2, 2, 2)]
        parameters = Plays(self_plays=2, op_plays=2, op_openings=2)

        super().__init__(parameters=parameters, pattern=pattern)



[docs]class PSOGambler2_2_2_Noise05(Gambler):
    """
    A 2x2x2 PSOGambler trained with pyswarm with noise=0.05.

    Names:

    - PSO Gambler 2_2_2 Noise 05: Original name by Marc Harper
    """

    name = "PSO Gambler 2_2_2 Noise 05"

    def __init__(self) -> None:
        pattern = tables[("PSO Gambler 2_2_2 Noise 05", 2, 2, 2)]
        parameters = Plays(self_plays=2, op_plays=2, op_openings=2)

        super().__init__(parameters=parameters, pattern=pattern)



[docs]class ZDMem2(Gambler):
    """
    A memory two generalization of a zero determinant player.

    Names:

    - ZDMem2: Original name by Marc Harper
    - Unnamed [LiS2014]_

    """

    name = "ZD-Mem2"

    classifier = {
        "memory_depth": 2,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        pattern = [
            11 / 12,
            4 / 11,
            7 / 9,
            1 / 10,
            5 / 6,
            3 / 11,
            7 / 9,
            1 / 10,
            2 / 3,
            1 / 11,
            7 / 9,
            1 / 10,
            3 / 4,
            2 / 11,
            7 / 9,
            1 / 10,
        ]
        parameters = Plays(self_plays=2, op_plays=2, op_openings=0)

        super().__init__(parameters=parameters, pattern=pattern)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.geller

"""
The player classes in this module do not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising them.
"""

from axelrod._strategy_utils import inspect_strategy
from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Geller(Player):
    """Observes what the player will do in the next round and adjust.

    If unable to do this: will play randomly.


    This code is inspired by Matthew Williams' talk
    "Cheating at rock-paper-scissors — meta-programming in Python"
    given at Django Weekend Cardiff in February 2014.

    His code is here: https://github.com/mattjw/rps_metaprogramming
    and there's some more info here: http://www.mattjw.net/2014/02/rps-metaprogramming/

    This code is **way** simpler than Matt's, as in this exercise we already
    have access to the opponent instance, so don't need to go
    hunting for it in the stack. Instead we can just call it to
    see what it's going to play, and return a result based on that

    This is almost certainly cheating, and more than likely against the
    spirit of the 'competition' :-)

    Names:

    - Geller: Original name by Martin Chorley (@martinjc)
    """

    name = "Geller"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": True,  # Finds out what opponent will do
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def foil_strategy_inspection(self) -> Action:
        """Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead"""
        return self._random.random_choice(0.5)


[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Look at what the opponent will play in the next round and choose a strategy
        that gives the least jail time, which is is equivalent to playing the same
        strategy as that which the opponent will play.
        """

        return inspect_strategy(self, opponent)




[docs]class GellerCooperator(Geller):
    """Observes what the player will do (like :code:`Geller`) but if unable to
    will cooperate.

    Names:

    - Geller Cooperator: Original name by Karol Langner
    """

    name = "Geller Cooperator"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": True,  # Finds out what opponent will do
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def foil_strategy_inspection() -> Action:
        """
        Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead
        """
        return C




[docs]class GellerDefector(Geller):
    """Observes what the player will do (like :code:`Geller`) but if unable to
    will defect.

    Names:

    - Geller Defector: Original name by Karol Langner
    """

    name = "Geller Defector"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": True,  # Finds out what opponent will do
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def foil_strategy_inspection() -> Action:
        """Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead"""
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.gobymajority

import copy
from typing import Any, Dict, Union

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class GoByMajority(Player):
    """Submitted to Axelrod's second tournament by Gail Grisell.  It came 23rd
    and was written in 10 lines of BASIC.

    A player examines the history of the opponent: if the opponent has more
    defections than cooperations then the player defects.

    In case of equal
    number of defections and cooperations this player will Cooperate. Passing
    the `soft=False` keyword argument when initialising will create a
    HardGoByMajority which Defects in case of equality.

    An optional memory attribute will limit the number of turns remembered (by
    default this is 0)

    Names:

    - Go By Majority: [Axelrod1984]_
    - Grisell: [Axelrod1980b]_
    - Soft Majority: [Mittal2009]_
    """

    name = "Go By Majority"
    classifier = {
        "stochastic": False,
        "inspects_source": False,
        "long_run_time": False,
        "manipulates_source": False,
        "manipulates_state": False,
        "memory_depth": float("inf"),
    }  # type: Dict[str, Any]

    def __init__(
        self, memory_depth: Union[int, float] = float("inf"), soft: bool = True
    ) -> None:
        """
        Parameters
        ----------
        memory_depth: int >= 0
            The number of rounds to use for the calculation of the cooperation
            and defection probabilities of the opponent.
        soft: bool
            Indicates whether to cooperate or not in the case that the
            cooperation and defection probabilities are equal.
        """

        super().__init__()
        self.soft = soft
        self.classifier["memory_depth"] = memory_depth
        if self.classifier["memory_depth"] < float("inf"):
            self.memory = self.classifier["memory_depth"]
        else:
            self.memory = 0
        self.name = "Go By Majority" + (self.memory > 0) * (": %i" % self.memory)
        if self.soft:
            self.name = "Soft " + self.name
        else:
            self.name = "Hard " + self.name

    def __repr__(self):
        return self.name

[docs]    def strategy(self, opponent: Player) -> Action:
        """This is affected by the history of the opponent.

        As long as the opponent cooperates at least as often as they defect then
        the player will cooperate.  If at any point the opponent has more
        defections than cooperations in memory the player defects.
        """

        history = opponent.history[-self.memory :]
        defections = sum([s == D for s in history])
        cooperations = sum([s == C for s in history])
        if defections > cooperations:
            return D
        if defections == cooperations:
            if self.soft:
                return C
            else:
                return D
        return C




[docs]class GoByMajority40(GoByMajority):
    """
    GoByMajority player with a memory of 40.

    Names:

    - Go By Majority 40: Original name by Karol Langner
    """

    name = "Go By Majority 40"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 40

    def __init__(self) -> None:
        super().__init__(memory_depth=40)



[docs]class GoByMajority20(GoByMajority):
    """
    GoByMajority player with a memory of 20.

    Names:

    - Go By Majority 20: Original name by Karol Langner
    """

    name = "Go By Majority 20"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 20

    def __init__(self) -> None:
        super().__init__(memory_depth=20)



[docs]class GoByMajority10(GoByMajority):
    """
    GoByMajority player with a memory of 10.

    Names:

    - Go By Majority 10: Original name by Karol Langner
    """

    name = "Go By Majority 10"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 10

    def __init__(self) -> None:
        super().__init__(memory_depth=10)



[docs]class GoByMajority5(GoByMajority):
    """
    GoByMajority player with a memory of 5.

    Names:

    - Go By Majority 5: Original name by Karol Langner
    """

    name = "Go By Majority 5"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 5

    def __init__(self) -> None:
        super().__init__(memory_depth=5)



[docs]class HardGoByMajority(GoByMajority):
    """A player examines the history of the opponent: if the opponent has more
    defections than cooperations then the player defects. In case of equal
    number of defections and cooperations this player will Defect.

    An optional memory attribute will limit the number of turns remembered (by
    default this is 0)

    Names:

    - Hard Majority: [Mittal2009]_
    """

    name = "Hard Go By Majority"

    def __init__(self, memory_depth: Union[int, float] = float("inf")) -> None:
        super().__init__(memory_depth=memory_depth, soft=False)



[docs]class HardGoByMajority40(HardGoByMajority):
    """
    HardGoByMajority player with a memory of 40.

    Names:

    - Hard Go By Majority 40: Original name by Karol Langner
    """

    name = "Hard Go By Majority 40"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 40

    def __init__(self) -> None:
        super().__init__(memory_depth=40)



[docs]class HardGoByMajority20(HardGoByMajority):
    """
    HardGoByMajority player with a memory of 20.

    Names:

    - Hard Go By Majority 20: Original name by Karol Langner
    """

    name = "Hard Go By Majority 20"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 20

    def __init__(self) -> None:
        super().__init__(memory_depth=20)



[docs]class HardGoByMajority10(HardGoByMajority):
    """
    HardGoByMajority player with a memory of 10.

    Names:

    - Hard Go By Majority 10: Original name by Karol Langner
    """

    name = "Hard Go By Majority 10"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 10

    def __init__(self) -> None:
        super().__init__(memory_depth=10)



[docs]class HardGoByMajority5(HardGoByMajority):
    """
    HardGoByMajority player with a memory of 5.

    Names:

    - Hard Go By Majority 5: Original name by Karol Langner
    """

    name = "Hard Go By Majority 5"
    classifier = copy.copy(GoByMajority.classifier)
    classifier["memory_depth"] = 5

    def __init__(self) -> None:
        super().__init__(memory_depth=5)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.gradualkiller

from axelrod.action import Action
from axelrod.player import Player
from axelrod.strategy_transformers import InitialTransformer

C, D = Action.C, Action.D


[docs]@InitialTransformer((D, D, D, D, D, C, C), name_prefix=None)
class GradualKiller(Player):
    """
    It begins by defecting in the first five moves, then cooperates two times.
    It then defects all the time if the opponent has defected in move 6 and 7,
    else cooperates all the time.
    Initially designed to stop Gradual from defeating TitForTat in a 3 Player
    tournament.

    Names

    - Gradual Killer: [Prison1998]_
    """

    # These are various properties for the strategy
    name = "Gradual Killer"
    classifier = {
        "memory_depth": float("Inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def strategy(self, opponent: Player) -> Action:
        if opponent.history[5:7] == [D, D]:
            return D
        return C





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.grudger

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Grudger(Player):
    """
    A player starts by cooperating however will defect if at any point the
    opponent has defected.

    This strategy came 7th in Axelrod's original tournament.

    Names:

    - Friedman's strategy: [Axelrod1980]_
    - Grudger: [Li2011]_
    - Grim: [Berg2015]_
    - Grim Trigger: [Banks1990]_
    - Spite: [Beaufils1997]_
    - Spiteful: [Mathieu2015]_
    - Vengeful: [Ashlock2009]_
    """

    name = "Grudger"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        """Begins by playing C, then plays D for the remaining rounds if the
        opponent ever plays D."""
        if opponent.defections:
            return D
        return C




[docs]class ForgetfulGrudger(Player):
    """
    A player starts by cooperating however will defect if at any point the
    opponent has defected, but forgets after mem_length matches.

    Names:

    - Forgetful Grudger: Original name by Geraint Palmer
    """

    name = "Forgetful Grudger"
    classifier = {
        "memory_depth": 10,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        """Initialised the player."""
        super().__init__()
        self.mem_length = 10
        self.grudged = False
        self.grudge_memory = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        """Begins by playing C, then plays D for mem_length rounds if the
        opponent ever plays D."""
        if self.grudge_memory == self.mem_length:
            self.grudge_memory = 0
            self.grudged = False

        if D in opponent.history[-1:]:
            self.grudged = True

        if self.grudged:
            self.grudge_memory += 1
            return D
        return C




[docs]class OppositeGrudger(Player):
    """
    A player starts by defecting however will cooperate if at any point the
    opponent has cooperated.

    Names:

    - Opposite Grudger: Original name by Geraint Palmer
    """

    name = "Opposite Grudger"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        """Begins by playing D, then plays C for the remaining rounds if the
        opponent ever plays C."""
        if opponent.cooperations:
            return C
        return D




[docs]class Aggravater(Player):
    """
    Grudger, except that it defects on the first 3 turns

    Names

    - Aggravater: Original name by Thomas Campbell
    """

    name = "Aggravater"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        if len(opponent.history) < 3:
            return D
        elif opponent.defections:
            return D
        return C




[docs]class SoftGrudger(Player):
    """
    A modification of the Grudger strategy. Instead of punishing by always
    defecting: punishes by playing: D, D, D, D, C, C. (Will continue to
    cooperate afterwards).

    - Soft Grudger (SGRIM): [Li2011]_
    """

    name = "Soft Grudger"
    classifier = {
        "memory_depth": 6,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        """Initialised the player."""
        super().__init__()
        self.grudged = False
        self.grudge_memory = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        """Begins by playing C, then plays D, D, D, D, C, C against a defection
        """
        if self.grudged:
            strategy = [D, D, D, C, C][self.grudge_memory]
            self.grudge_memory += 1
            if self.grudge_memory == 5:
                self.grudge_memory = 0
                self.grudged = False
            return strategy
        elif D in opponent.history[-1:]:
            self.grudged = True
            return D
        return C




[docs]class GrudgerAlternator(Player):
    """
    A player starts by cooperating until the first opponents defection,
    then alternates D-C.

    Names:

    - c_then_per_dc: [Prison1998]_
    - Grudger Alternator: Original name by Geraint Palmer
    """

    name = "GrudgerAlternator"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """Begins by playing C, then plays Alternator for the remaining rounds
        if the opponent ever plays D."""
        if opponent.defections:
            if self.history[-1] == C:
                return D
        return C




[docs]class EasyGo(Player):
    """
    A player starts by defecting however will cooperate if at any point the
    opponent has defected.

    Names:

    - Easy Go: [Prison1998]_
    - Reverse Grudger (RGRIM): [Li2011]_
    - Fool Me Forever: [Harper2017]_
    """

    name = "EasyGo"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        """Begins by playing D, then plays C for the remaining rounds if the
        opponent ever plays D."""
        if opponent.defections:
            return C
        return D




[docs]class GeneralSoftGrudger(Player):
    """
    A generalization of the SoftGrudger strategy. SoftGrudger punishes by
    playing: D, D, D, D, C, C. after a defection by the opponent.
    GeneralSoftGrudger only punishes after its opponent defects a specified
    amount of times consecutively. The punishment is in the form of a series of
    defections followed by a 'penance' of a series of consecutive cooperations.

    Names:

    - General Soft Grudger: Original Name by J. Taylor Smith
    """

    name = "General Soft Grudger"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, n: int = 1, d: int = 4, c: int = 2) -> None:
        """
        Parameters
        ----------
        n: int
            The number of defections by the opponent to trigger punishment
        d: int
            The number of defections to punish the opponent
        c: int
            The number of cooperations in the 'penance' stage

        Special Cases
        -------------
        GeneralSoftGrudger(1,4,2) is equivalent to SoftGrudger
        """
        super().__init__()
        self.n = n
        self.d = d
        self.c = c
        self.grudge = [D] * (d - 1) + [C] * c
        self.grudged = False
        self.grudge_memory = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Punishes after its opponent defects 'n' times consecutively.
        The punishment is in the form of 'd' defections followed by a penance of
        'c' consecutive cooperations.
        """
        if self.grudged:
            strategy = self.grudge[self.grudge_memory]
            self.grudge_memory += 1
            if self.grudge_memory == len(self.grudge):
                self.grudged = False
                self.grudge_memory = 0
            return strategy
        elif [D] * self.n == opponent.history[-self.n :]:
            self.grudged = True
            return D

        return C


    def __repr__(self) -> str:
        return "%s: n=%s,d=%s,c=%s" % (self.name, self.n, self.d, self.c)



[docs]class SpitefulCC(Player):
    """
    Behaves like Grudger after cooperating for 2 turns

    Names:

    - spiteful_cc: [Mathieu2015]_
    """

    name = "SpitefulCC"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        """
        Cooperates until the oponent defects, then defects forever.
        Always cooperates twice at the start.
        """
        if len(opponent.history) < 2:
            return C
        elif opponent.defections:
            return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.grumpy

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Grumpy(Player):
    """
    A player that defects after a certain level of grumpiness.
    Grumpiness increases when the opponent defects and decreases
    when the opponent co-operates.

    Names:

    - Grumpy: Original name by Jason Young
    """

    name = "Grumpy"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        starting_state: str = "Nice",
        grumpy_threshold: int = 10,
        nice_threshold: int = -10,
    ) -> None:
        """
        Parameters
        ----------
        starting_state: str
            'Nice' or 'Grumpy'
        grumpy_threshold: int
            The threshold of opponent defections - cooperations to become
            grumpy
        nice_threshold: int
            The threshold of opponent defections - cooperations to become
            nice
        """
        super().__init__()
        self.state = starting_state
        self.grumpy_threshold = grumpy_threshold
        self.nice_threshold = nice_threshold

[docs]    def strategy(self, opponent: Player) -> Action:
        """A player that gets grumpier the more the opposition defects,
        and nicer the more they cooperate.

        Starts off Nice, but becomes grumpy once the grumpiness threshold is
        hit. Won't become nice once that grumpy threshold is hit, but must
        reach a much lower threshold before it becomes nice again.
        """

        grumpiness = opponent.defections - opponent.cooperations

        if self.state == "Nice":
            if grumpiness > self.grumpy_threshold:
                self.state = "Grumpy"
                return D
            return C

        if self.state == "Grumpy":
            if grumpiness < self.nice_threshold:
                self.state = "Nice"
                return C
            return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.handshake

from typing import List

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Handshake(Player):
    """Starts with C, D. If the opponent plays the same way, cooperate forever,
    else defect forever.

    Names:

    - Handshake: [Robson1990]_
    """

    name = "Handshake"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, initial_plays: List[Action] = None) -> None:
        super().__init__()
        if not initial_plays:
            initial_plays = [C, D]
        self.initial_plays = initial_plays

[docs]    def strategy(self, opponent: Player) -> Action:
        # Begin by playing the sequence C, D
        index = len(self.history)
        if index < len(self.initial_plays):
            return self.initial_plays[index]
        # If our opponent played [C, D] on the first two moves, cooperate
        # forever. Otherwise defect forever.
        if opponent.history[0 : len(self.initial_plays)] == self.initial_plays:
            return C
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.hmm

from typing import Any, Dict

from axelrod.action import Action
from axelrod.evolvable_player import (
    EvolvablePlayer,
    InsufficientParametersError,
    copy_lists,
    crossover_lists,
)
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]def is_stochastic_matrix(m, ep=1e-8) -> bool:
    """Checks that the matrix m (a list of lists) is a stochastic matrix."""
    for i in range(len(m)):
        for j in range(len(m[i])):
            if (m[i][j] < 0) or (m[i][j] > 1):
                return False
        s = sum(m[i])
        if abs(1.0 - s) > ep:
            return False
    return True



def normalize_vector(vec):
    s = sum(vec)
    vec = [v / s for v in vec]
    return vec


[docs]def mutate_row(row, mutation_probability, rng):
    """, crossover_lists_of_lists
    Given a row of probabilities, randomly change each entry with probability
    `mutation_probability` (a value between 0 and 1).  If changing, then change
    by a value randomly (uniformly) chosen from [-0.25, 0.25] bounded by 0 and
    100%.
    """
    randoms = rng.random(len(row))
    for i in range(len(row)):
        if randoms[i] < mutation_probability:
            ep = rng.uniform(-1, 1) / 4
            row[i] += ep
            if row[i] < 0:
                row[i] = 0
            if row[i] > 1:
                row[i] = 1
    return row



[docs]class SimpleHMM(object):
    """Implementation of a basic Hidden Markov Model. We assume that the
    transition matrix is conditioned on the opponent's last action, so there
    are two transition matrices. Emission distributions are stored as Bernoulli
    probabilities for each state. This is essentially a stochastic FSM.

    https://en.wikipedia.org/wiki/Hidden_Markov_model
    """

    def __init__(
        self, transitions_C, transitions_D, emission_probabilities, initial_state
    ) -> None:
        """
        Params
        ------
        transitions_C and transitions_D are square stochastic matrices:
            lists of lists with all values in [0, 1] and rows that sum to 1.
        emission_probabilities is a vector of values in [0, 1]
        initial_state is an element of range(0, len(emission_probabilities))
        """
        self.transitions_C = transitions_C
        self.transitions_D = transitions_D
        self.emission_probabilities = emission_probabilities
        self.state = initial_state
        self._cache_C = dict()  # type: Dict[int, int]
        self._cache_D = dict()  # type: Dict[int, int]
        self._cache_deterministic_transitions()
        # Random generator will be set by parent strategy
        self._random = None  # type: Any

    def _cache_deterministic_transitions(self):
        """Cache deterministic transitions to avoid unnecessary random draws."""
        # If 1 is in the transition vector, it's deterministic. Just pick it out.
        # By caching we avoid repeated searches.
        for state in range(len(self.transitions_C)):
            if 1 in self.transitions_C[state]:
                self._cache_C[state] = self.transitions_C[state].index(1)
        for state in range(len(self.transitions_D)):
            if 1 in self.transitions_D[state]:
                self._cache_D[state] = self.transitions_D[state].index(1)

[docs]    def is_well_formed(self) -> bool:
        """
        Determines if the HMM parameters are well-formed:
            - Both matrices are stochastic
            - Emissions probabilities are in [0, 1]
            - The initial state is valid.
        """
        if not is_stochastic_matrix(self.transitions_C):
            return False
        if not is_stochastic_matrix(self.transitions_D):
            return False
        for p in self.emission_probabilities:
            if (p < 0) or (p > 1):
                return False
        if self.state not in range(0, len(self.emission_probabilities)):
            return False
        return True


    def __eq__(self, other: Player) -> bool:
        """Equality of two HMMs"""
        check = True
        for attr in [
            "transitions_C",
            "transitions_D",
            "emission_probabilities",
            "state",
        ]:
            check = check and getattr(self, attr) == getattr(other, attr)
        return check

[docs]    def move(self, opponent_action: Action) -> Action:
        """Changes state and computes the response action.

        Parameters
            opponent_action: Axelrod.Action
                The opponent's last action.
        """
        # Choose next state.
        if opponent_action == C:
            try:
                next_state = self._cache_C[self.state]
            except KeyError:
                num_states = len(self.emission_probabilities)
                next_state = self._random.choice(num_states, 1, p=self.transitions_C[self.state])[0]
        else:
            try:
                next_state = self._cache_D[self.state]
            except KeyError:
                num_states = len(self.emission_probabilities)
                next_state = self._random.choice(num_states, 1, p=self.transitions_D[self.state])[0]

        self.state = next_state
        # Choose action to emit.
        p = self.emission_probabilities[self.state]
        if p == 0:
            return D
        if p == 1:
            return C
        action = self._random.random_choice(p)
        return action




[docs]class HMMPlayer(Player):
    """
    Abstract base class for Hidden Markov Model players.

    Names

        - HMM Player: Original name by Marc Harper
    """

    name = "HMM Player"

    classifier = {
        "memory_depth": 1,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        transitions_C=None,
        transitions_D=None,
        emission_probabilities=None,
        initial_state=0,
        initial_action=C
    ) -> None:
        Player.__init__(self)
        if not transitions_C:
            transitions_C = [[1]]
            transitions_D = [[1]]
            emission_probabilities = [0.5]  # Not stochastic
            initial_state = 0
        self.initial_state = initial_state
        self.initial_action = initial_action
        self.hmm = SimpleHMM(
            copy_lists(transitions_C), copy_lists(transitions_D), list(emission_probabilities), initial_state
        )
        assert self.hmm.is_well_formed()
        self.state = self.hmm.state
        self.classifier["stochastic"] = self.is_stochastic()

[docs]    def is_stochastic(self) -> bool:
        """Determines if the player is stochastic."""
        # If the transitions matrices and emission_probabilities are all 0 or 1
        # Then the player is stochastic
        values = set(self.hmm.emission_probabilities)
        for m in [self.hmm.transitions_C, self.hmm.transitions_D]:
            for row in m:
                values.update(row)
        if not values.issubset({0, 1}):
            return True
        return False


[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return self.initial_action
        else:
            action = self.hmm.move(opponent.history[-1])
            # Record the state for testing purposes, this isn't necessary
            # for the strategy to function
            self.state = self.hmm.state
            return action


[docs]    def set_seed(self, seed=None):
        super().set_seed(seed=seed)
        # Share RNG with HMM
        # The evolvable version of the class needs to manually share the rng with the HMM
        # after initialization.
        try:
            self.hmm._random = self._random
        except AttributeError:
            pass




[docs]class EvolvableHMMPlayer(HMMPlayer, EvolvablePlayer):
    """Evolvable version of HMMPlayer."""
    name = "EvolvableHMMPlayer"

    def __init__(
        self,
        transitions_C=None,
        transitions_D=None,
        emission_probabilities=None,
        initial_state=0,
        initial_action=C,
        num_states=None,
        mutation_probability=None,
        seed: int = None
    ) -> None:
        EvolvablePlayer.__init__(self, seed=seed)
        transitions_C, transitions_D, emission_probabilities, initial_state, initial_action, num_states, mutation_probability = self._normalize_parameters(
            transitions_C, transitions_D, emission_probabilities, initial_state, initial_action, num_states, mutation_probability)
        self.mutation_probability = mutation_probability
        HMMPlayer.__init__(self,
                           transitions_C=transitions_C,
                           transitions_D=transitions_D,
                           emission_probabilities=emission_probabilities,
                           initial_state=initial_state,
                           initial_action=initial_action)
        self.hmm._random = self._random
        self.overwrite_init_kwargs(
            transitions_C=transitions_C,
            transitions_D=transitions_D,
            emission_probabilities=emission_probabilities,
            initial_state=initial_state,
            initial_action=initial_action,
            num_states=num_states,
            mutation_probability=mutation_probability
        )

    def _normalize_parameters(self, transitions_C=None, transitions_D=None, emission_probabilities=None,
                              initial_state=None, initial_action=None, num_states=None, mutation_probability=None):
        if not ((transitions_C and transitions_D and emission_probabilities) and (initial_state is not None) and (initial_action is not None)):
            if not num_states:
                raise InsufficientParametersError("Insufficient Parameters to instantiate EvolvableHMMPlayer")
            transitions_C, transitions_D, emission_probabilities, initial_state, initial_action = self.random_params(
                num_states)
        # Normalize types of various matrices
        for m in [transitions_C, transitions_D]:
            for i in range(len(m)):
                m[i] = list(map(float, m[i]))
        emission_probabilities = list(map(float, emission_probabilities))
        num_states = len(emission_probabilities)
        if mutation_probability is None:
            mutation_probability = 10 / (num_states ** 2)
        else:
            mutation_probability = mutation_probability
        return transitions_C, transitions_D, emission_probabilities, initial_state, initial_action, num_states, mutation_probability

    def random_params(self, num_states):
        transitions_C = []
        transitions_D = []
        emission_probabilities = []
        for _ in range(num_states):
            transitions_C.append(self._random.random_vector(num_states))
            transitions_D.append(self._random.random_vector(num_states))
            emission_probabilities.append(self._random.random())
        initial_state = self._random.randint(0, num_states)
        initial_action = C
        return transitions_C, transitions_D, emission_probabilities, initial_state, initial_action

    @property
    def num_states(self):
        return len(self.hmm.emission_probabilities)

    def mutate_rows(self, rows, mutation_probability):
        for i, row in enumerate(rows):
            row = mutate_row(row, mutation_probability, self._random)
            rows[i] = normalize_vector(row)
        return rows

[docs]    def mutate(self):
        transitions_C = self.mutate_rows(
            self.hmm.transitions_C, self.mutation_probability)
        transitions_D = self.mutate_rows(
            self.hmm.transitions_D, self.mutation_probability)
        emission_probabilities = mutate_row(
            self.hmm.emission_probabilities, self.mutation_probability, self._random)
        initial_action = self.initial_action
        if self._random.random() < self.mutation_probability / 10:
            initial_action = self.initial_action.flip()
        initial_state = self.initial_state
        if self._random.random() < self.mutation_probability / (10 * self.num_states):
            initial_state = self._random.randint(0, self.num_states)
        return self.create_new(
            transitions_C=transitions_C,
            transitions_D=transitions_D,
            emission_probabilities=emission_probabilities,
            initial_state=initial_state,
            initial_action=initial_action,
        )


[docs]    def crossover(self, other):
        if other.__class__ != self.__class__:
            raise TypeError("Crossover must be between the same player classes.")
        transitions_C = crossover_lists(self.hmm.transitions_C, other.hmm.transitions_C, self._random)
        transitions_D = crossover_lists(self.hmm.transitions_D, other.hmm.transitions_D, self._random)
        emission_probabilities = crossover_lists(
            self.hmm.emission_probabilities, other.hmm.emission_probabilities, self._random)
        return self.create_new(
            transitions_C=transitions_C,
            transitions_D=transitions_D,
            emission_probabilities=emission_probabilities
        )


[docs]    def receive_vector(self, vector):
        """
        Read a serialized vector into the set of HMM parameters (less initial
        state).  Then assign those HMM parameters to this class instance.

        Assert that the vector has the right number of elements for an HMMParams
        class with self.num_states.

        Assume the first num_states^2 entries are the transitions_C matrix.  The
        next num_states^2 entries are the transitions_D matrix.  Then the next
        num_states entries are the emission_probabilities vector.  Finally the last
        entry is the initial_action.
        """

        assert(len(vector) == 2 * self.num_states ** 2 + self.num_states + 1)

        def deserialize(vector):
            matrix = []
            for i in range(self.num_states):
                row = vector[self.num_states * i: self.num_states * (i + 1)]
                row = normalize_vector(row)
                matrix.append(row)
            return matrix

        break_tc = self.num_states ** 2
        break_td = 2 * self.num_states ** 2
        break_ep = 2 * self.num_states ** 2 + self.num_states
        initial_state = 0
        self.hmm = SimpleHMM(
            deserialize(vector[0:break_tc]),
            deserialize(vector[break_tc:break_td]),
            normalize_vector(vector[break_td:break_ep]),
            initial_state
        )
        self.initial_action = C if round(vector[-1]) == 0 else D
        self.initial_state = initial_state


[docs]    def create_vector_bounds(self):
        """Creates the bounds for the decision variables."""
        vec_len = 2 * self.num_states ** 2 + self.num_states + 1
        lb = [0.0] * vec_len
        ub = [1.0] * vec_len
        return lb, ub




[docs]class EvolvedHMM5(HMMPlayer):
    """
    An HMM-based player with five hidden states trained with an evolutionary
    algorithm.

    Names:

        - Evolved HMM 5: Original name by Marc Harper
    """

    name = "Evolved HMM 5"

    classifier = {
        "memory_depth": 5,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        initial_state = 3
        initial_action = C
        t_C = [
            [1, 0, 0, 0, 0],
            [0, 1, 0, 0, 0],
            [0, 1, 0, 0, 0],
            [0.631, 0, 0, 0.369, 0],
            [0.143, 0.018, 0.118, 0, 0.721],
        ]

        t_D = [
            [0, 1, 0, 0, 0],
            [0, 0.487, 0.513, 0, 0],
            [0, 0, 0, 0.590, 0.410],
            [1, 0, 0, 0, 0],
            [0, 0.287, 0.456, 0.146, 0.111],
        ]

        emissions = [1, 0, 0, 1, 0.111]
        super().__init__(t_C, t_D, emissions, initial_state, initial_action)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.hunter

from typing import List, Optional, Tuple

from axelrod._strategy_utils import detect_cycle
from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class DefectorHunter(Player):
    """A player who hunts for defectors.

    Names:

    - Defector Hunter: Original name by Karol Langner
    """

    name = "Defector Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) >= 4 and len(opponent.history) == opponent.defections:
            return D
        return C




[docs]class CooperatorHunter(Player):
    """A player who hunts for cooperators.

    Names:

    - Cooperator Hunter: Original name by Karol Langner
    """

    name = "Cooperator Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) >= 4 and len(opponent.history) == opponent.cooperations:
            return D
        return C




def is_alternator(history: List[Action]) -> bool:
    for i in range(len(history) - 1):
        if history[i] == history[i + 1]:
            return False
    return True


[docs]class AlternatorHunter(Player):
    """A player who hunts for alternators.

    Names:

    - Alternator Hunter: Original name by Karol Langner
    """

    name = "Alternator Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.is_alt = False

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) < 6:
            return C
        if len(self.history) == 6:
            if is_alternator(opponent.history):
                self.is_alt = True
        if self.is_alt:
            return D
        return C




[docs]class CycleHunter(Player):
    """Hunts strategies that play cyclically, like any of the Cyclers,
    Alternator, etc.

    Names:

    - Cycle Hunter: Original name by Marc Harper
    """

    name = "Cycle Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.cycle = None  # type: Optional[Tuple[Action]]

[docs]    def strategy(self, opponent: Player) -> Action:
        if self.cycle:
            return D
        cycle = detect_cycle(opponent.history, min_size=3)
        if cycle:
            if len(set(cycle)) > 1:
                self.cycle = cycle
                return D
        return C




[docs]class EventualCycleHunter(CycleHunter):
    """Hunts strategies that eventually play cyclically.

    Names:

    - Eventual Cycle Hunter: Original name by Marc Harper
    """

    name = "Eventual Cycle Hunter"

[docs]    def strategy(self, opponent: Player) -> None:
        if len(opponent.history) < 10:
            return C
        if len(opponent.history) == opponent.cooperations:
            return C
        if len(opponent.history) % 10 == 0:
            # recheck
            self.cycle = detect_cycle(opponent.history, offset=10, min_size=3)
        if self.cycle:
            return D
        else:
            return C




[docs]class MathConstantHunter(Player):
    """A player who hunts for mathematical constant players.

    Names:

    Math Constant Hunter: Original name by Karol Langner
    """

    name = "Math Constant Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Check whether the number of cooperations in the first and second halves
        of the history are close. The variance of the uniform distribution (1/4)
        is a reasonable delta but use something lower for certainty and avoiding
        false positives. This approach will also detect a lot of random players.
        """

        n = len(self.history)
        if n >= 8 and opponent.cooperations and opponent.defections:
            start1, end1 = 0, n // 2
            start2, end2 = n // 4, 3 * n // 4
            start3, end3 = n // 2, n
            count1 = opponent.history[start1:end1].count(C) + self.history[
                start1:end1
            ].count(C)
            count2 = opponent.history[start2:end2].count(C) + self.history[
                start2:end2
            ].count(C)
            count3 = opponent.history[start3:end3].count(C) + self.history[
                start3:end3
            ].count(C)
            ratio1 = 0.5 * count1 / (end1 - start1)
            ratio2 = 0.5 * count2 / (end2 - start2)
            ratio3 = 0.5 * count3 / (end3 - start3)
            if abs(ratio1 - ratio2) < 0.2 and abs(ratio1 - ratio3) < 0.2:
                return D
        return C




[docs]class RandomHunter(Player):
    """A player who hunts for random players.

    Names:

    - Random Hunter: Original name by Karol Langner
    """

    name = "Random Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        self.countCC = 0
        self.countDD = 0
        super().__init__()

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        A random player is unpredictable, which means the conditional frequency
        of cooperation after cooperation, and defection after defections, should
        be close to 50%... although how close is debatable.
        """
        # Update counts
        if len(self.history) > 1:
            if self.history[-2] == C and opponent.history[-1] == C:
                self.countCC += 1
            if self.history[-2] == D and opponent.history[-1] == D:
                self.countDD += 1

        n = len(self.history)
        if n > 10:
            probabilities = []
            if self.cooperations > 5:
                probabilities.append(self.countCC / self.cooperations)
            if self.defections > 5:
                probabilities.append(self.countDD / self.defections)
            if probabilities and all([abs(p - 0.5) < 0.25 for p in probabilities]):
                return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.inverse

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Inverse(Player):
    """A player who defects with a probability that diminishes relative to how
    long ago the opponent defected.

    Names:

    - Inverse: Original Name by Karol Langner
    """

    name = "Inverse"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """Looks at opponent history to see if they have defected.

        If so, player defection is inversely proportional to when this occurred.
        """

        # calculate how many turns ago the opponent defected
        index = next(
            (
                index
                for index, value in enumerate(opponent.history[::-1], start=1)
                if value == D
            ),
            None,
        )

        if index is None:
            return C

        return self._random.random_choice(1 - 1 / abs(index))






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.lookerup

from collections import namedtuple
from itertools import product
from typing import Any, TypeVar

from axelrod.action import Action, actions_to_str, str_to_actions
from axelrod.evolvable_player import (
    EvolvablePlayer,
    InsufficientParametersError,
    crossover_dictionaries,
)
from axelrod.player import Player

C, D = Action.C, Action.D
actions = (C, D)

Plays = namedtuple("Plays", "self_plays, op_plays, op_openings")
Reaction = TypeVar("Reaction", Action, float)


[docs]class LookupTable(object):
    """
    LookerUp and its children use this object to determine their next actions.

    It is an object that creates a table of all possible plays to a specified
    depth and the action to be returned for each combination of plays.
    The "get" method returns the appropriate response.
    For the table containing::

        ....
        Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, C): D
        Plays(self_plays=(C, C), op_plays=(C, D), op_openings=(D, D): C
        ...

    with:
    player.history[-2:]=[C, C] and
    opponent.history[-2:]=[C, D] and
    opponent.history[:2]=[D, D],
    calling LookupTable.get(plays=(C, C), op_plays=(C, D), op_openings=(D, D))
    will return C.

    Instantiate the table with a lookup_dict. This is
    {(self_plays_tuple, op_plays_tuple, op_openings_tuple): action, ...}.
    It must contain every possible
    permutation with C's and D's of the above tuple.  so::

        good_dict = {((C,), (C,), ()): C,
                     ((C,), (D,), ()): C,
                     ((D,), (C,), ()): D,
                     ((D,), (D,), ()): C}

        bad_dict = {((C,), (C,), ()): C,
                    ((C,), (D,), ()): C,
                    ((D,), (C,), ()): D}

    LookupTable.from_pattern() creates an ordered list of keys for you and maps
    the pattern to the keys.::

        LookupTable.from_pattern(pattern=(C, D, D, C),
            player_depth=0, op_depth=1, op_openings_depth=1
        )

    creates the dictionary::

        {Plays(self_plays=(), op_plays=(C), op_openings=(C)): C,
         Plays(self_plays=(), op_plays=(C), op_openings=(D)): D,
         Plays(self_plays=(), op_plays=(D), op_openings=(C)): D,
         Plays(self_plays=(), op_plays=(D), op_openings=(D)): C,}

    and then returns a LookupTable with that dictionary.
    """

    def __init__(self, lookup_dict: dict) -> None:
        self._dict = make_keys_into_plays(lookup_dict)

        sample_key = next(iter(self._dict))
        self._plays_depth = len(sample_key.self_plays)
        self._op_plays_depth = len(sample_key.op_plays)
        self._op_openings_depth = len(sample_key.op_openings)
        self._table_depth = max(
            self._plays_depth, self._op_plays_depth, self._op_openings_depth
        )
        self._raise_error_for_bad_lookup_dict()

    def _raise_error_for_bad_lookup_dict(self):
        if any(
            len(key.self_plays) != self._plays_depth
            or len(key.op_plays) != self._op_plays_depth
            or len(key.op_openings) != self._op_openings_depth
            for key in self._dict
        ):
            raise ValueError("Lookup table keys are not all the same size.")
        total_key_combinations = 2 ** (
            self._plays_depth + self._op_plays_depth + self._op_openings_depth
        )
        if total_key_combinations != len(self._dict):
            msg = (
                "Lookup table does not have enough keys"
                + " to cover all possibilities."
            )
            raise ValueError(msg)

    @classmethod
    def from_pattern(
        cls, pattern: tuple, player_depth: int, op_depth: int, op_openings_depth: int
    ):
        keys = create_lookup_table_keys(
            player_depth=player_depth,
            op_depth=op_depth,
            op_openings_depth=op_openings_depth,
        )
        if len(keys) != len(pattern):
            msg = "Pattern must be len: {}, but was len: {}".format(
                len(keys), len(pattern)
            )
            raise ValueError(msg)
        input_dict = dict(zip(keys, pattern))
        return cls(input_dict)

    def get(self, plays: tuple, op_plays: tuple, op_openings: tuple) -> Any:
        return self._dict[
            Plays(self_plays=plays, op_plays=op_plays, op_openings=op_openings)
        ]

    @property
    def player_depth(self) -> int:
        return self._plays_depth

    @property
    def op_depth(self) -> int:
        return self._op_plays_depth

    @property
    def op_openings_depth(self) -> int:
        return self._op_openings_depth

    @property
    def table_depth(self) -> int:
        return self._table_depth

    @property
    def dictionary(self) -> dict:
        return self._dict.copy()

[docs]    def display(
        self, sort_by: tuple = ("op_openings", "self_plays", "op_plays")
    ) -> str:
        """
        Returns a string for printing lookup_table info in specified order.

        :param sort_by: only_elements='self_plays', 'op_plays', 'op_openings'
        """

        def sorter(plays):
            return tuple(actions_to_str(getattr(plays, field) for field in sort_by))

        col_width = 11
        sorted_keys = sorted(self._dict, key=sorter)
        header_line = (
            "{str_list[0]:^{width}}|"
            + "{str_list[1]:^{width}}|"
            + "{str_list[2]:^{width}}"
        )
        display_line = header_line.replace("|", ",") + ": {str_list[3]},"

        def make_commaed_str(action_tuple):
            return ", ".join(str(action) for action in action_tuple)

        line_elements = [
            (
                make_commaed_str(getattr(key, sort_by[0])),
                make_commaed_str(getattr(key, sort_by[1])),
                make_commaed_str(getattr(key, sort_by[2])),
                self._dict[key],
            )
            for key in sorted_keys
        ]
        header = header_line.format(str_list=sort_by, width=col_width) + "\n"
        lines = [
            display_line.format(str_list=line, width=col_width)
            for line in line_elements
        ]
        return header + "\n".join(lines) + "\n"


    def __eq__(self, other) -> bool:
        if not isinstance(other, LookupTable):
            return False
        return self._dict == other.dictionary



[docs]def make_keys_into_plays(lookup_table: dict) -> dict:
    """Returns a dict where all keys are Plays."""
    new_table = lookup_table.copy()
    if any(not isinstance(key, Plays) for key in new_table):
        new_table = {Plays(*key): value for key, value in new_table.items()}
    return new_table



[docs]def create_lookup_table_keys(
    player_depth: int, op_depth: int, op_openings_depth: int
) -> list:
    """Returns a list of Plays that has all possible permutations of C's and
    D's for each specified depth. the list is in order,
    C < D sorted by ((player_tuple), (op_tuple), (op_openings_tuple)).
    create_lookup_keys(2, 1, 0) returns::

        [Plays(self_plays=(C, C), op_plays=(C,), op_openings=()),
         Plays(self_plays=(C, C), op_plays=(D,), op_openings=()),
         Plays(self_plays=(C, D), op_plays=(C,), op_openings=()),
         Plays(self_plays=(C, D), op_plays=(D,), op_openings=()),
         Plays(self_plays=(D, C), op_plays=(C,), op_openings=()),
         Plays(self_plays=(D, C), op_plays=(D,), op_openings=()),
         Plays(self_plays=(D, D), op_plays=(C,), op_openings=()),
         Plays(self_plays=(D, D), op_plays=(D,), op_openings=())]

    """
    self_plays = product((C, D), repeat=player_depth)
    op_plays = product((C, D), repeat=op_depth)
    op_openings = product((C, D), repeat=op_openings_depth)

    iterator = product(self_plays, op_plays, op_openings)
    return [Plays(*plays_tuple) for plays_tuple in iterator]



default_tft_lookup_table = {
    Plays(self_plays=(), op_plays=(D,), op_openings=()): D,
    Plays(self_plays=(), op_plays=(C,), op_openings=()): C,
}


[docs]class LookerUp(Player):
    """
    This strategy uses a LookupTable to decide its next action. If there is not
    enough history to use the table, it calls from a list of
    self.initial_actions.

    if self_depth=2, op_depth=3, op_openings_depth=5, LookerUp finds the last 2
    plays of self, the last 3 plays of opponent and the opening 5 plays of
    opponent. It then looks those up on the LookupTable and returns the
    appropriate action. If 5 rounds have not been played (the minimum required
    for op_openings_depth), it calls from self.initial_actions.

    LookerUp can be instantiated with a dictionary. The dictionary uses
    tuple(tuple, tuple, tuple) or Plays as keys. for example.

    - self_plays: depth=2
    - op_plays: depth=1
    - op_openings: depth=0::

        {Plays((C, C), (C), ()): C,
         Plays((C, C), (D), ()): D,
         Plays((C, D), (C), ()): D,  <- example below
         Plays((C, D), (D), ()): D,
         Plays((D, C), (C), ()): C,
         Plays((D, C), (D), ()): D,
         Plays((D, D), (C), ()): C,
         Plays((D, D), (D), ()): D}

    From the above table, if the player last played C, D and the opponent last
    played C (here the initial opponent play is ignored) then this round,
    the player would play D.

    The dictionary must contain all possible permutations of C's and D's.

    LookerUp can also be instantiated with `pattern=str/tuple` of actions, and::

        parameters=Plays(
            self_plays=player_depth: int,
            op_plays=op_depth: int,
            op_openings=op_openings_depth: int)

    It will create keys of len=2 ** (sum(parameters)) and map the pattern to
    the keys.

    initial_actions is a tuple such as (C, C, D). A table needs initial actions
    equal to max(self_plays depth, opponent_plays depth, opponent_initial_plays
    depth). If provided initial_actions is too long, the extra will be ignored.
    If provided initial_actions is too short, the shortfall will be made up
    with C's.

    Some well-known strategies can be expressed as special cases; for example
    Cooperator is given by the dict (All history is ignored and always play C)::

        {Plays((), (), ()) : C}


    Tit-For-Tat is given by (The only history that is important is the
    opponent's last play.)::

       {Plays((), (D,), ()): D,
        Plays((), (C,), ()): C}


    LookerUp's LookupTable defaults to Tit-For-Tat.  The initial_actions
    defaults to playing C.

    Names:

    - Lookerup: Original name by Martin Jones
    """

    name = "LookerUp"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    default_tft_lookup_table = {
        Plays(self_plays=(), op_plays=(D,), op_openings=()): D,
        Plays(self_plays=(), op_plays=(C,), op_openings=()): C,
    }

    def __init__(
        self,
        lookup_dict: dict = None,
        initial_actions: tuple = None,
        pattern: Any = None,  # pattern is str or tuple of Action's.
        parameters: Plays = None
    ) -> None:

        Player.__init__(self)
        self.parameters = parameters
        self.pattern = pattern
        self._lookup = self._get_lookup_table(lookup_dict, pattern, parameters)
        self._set_memory_depth()
        self.initial_actions = self._get_initial_actions(initial_actions)
        self._initial_actions_pool = list(self.initial_actions)

    @classmethod
    def _get_lookup_table(
        cls, lookup_dict: dict, pattern: Any, parameters: tuple
    ) -> LookupTable:
        if lookup_dict:
            return LookupTable(lookup_dict=lookup_dict)
        if pattern is not None and parameters is not None:
            if isinstance(pattern, str):
                pattern = str_to_actions(pattern)
            self_depth, op_depth, op_openings_depth = parameters
            return LookupTable.from_pattern(
                pattern, self_depth, op_depth, op_openings_depth
            )
        return LookupTable(default_tft_lookup_table)

    def _set_memory_depth(self):
        if self._lookup.op_openings_depth == 0:
            self.classifier["memory_depth"] = self._lookup.table_depth
        else:
            self.classifier["memory_depth"] = float("inf")

    def _get_initial_actions(self, initial_actions: tuple) -> tuple:
        """Initial actions will always be cut down to table_depth."""
        table_depth = self._lookup.table_depth
        if not initial_actions:
            return tuple([C] * table_depth)
        initial_actions_shortfall = table_depth - len(initial_actions)
        if initial_actions_shortfall > 0:
            return initial_actions + tuple([C] * initial_actions_shortfall)
        return initial_actions[:table_depth]

[docs]    def strategy(self, opponent: Player) -> Reaction:
        turn_index = len(opponent.history)
        while turn_index < len(self._initial_actions_pool):
            return self._initial_actions_pool[turn_index]

        player_last_n_plays = get_last_n_plays(
            player=self, depth=self._lookup.player_depth
        )
        opponent_last_n_plays = get_last_n_plays(
            player=opponent, depth=self._lookup.op_depth
        )
        opponent_initial_plays = tuple(
            opponent.history[: self._lookup.op_openings_depth]
        )

        return self._lookup.get(
            player_last_n_plays, opponent_last_n_plays, opponent_initial_plays
        )


    @property
    def lookup_dict(self):
        return self._lookup.dictionary

[docs]    def lookup_table_display(
        self, sort_by: tuple = ("op_openings", "self_plays", "op_plays")
    ) -> str:
        """
        Returns a string for printing lookup_table info in specified order.

        :param sort_by: only_elements='self_plays', 'op_plays', 'op_openings'
        """
        return self._lookup.display(sort_by=sort_by)




[docs]class EvolvableLookerUp(LookerUp, EvolvablePlayer):
    name = "EvolvableLookerUp"

    def __init__(
        self,
        lookup_dict: dict = None,
        initial_actions: tuple = None,
        pattern: Any = None,  # pattern is str or tuple of Action's.
        parameters: Plays = None,
        mutation_probability: float = None,
        seed: int = None
    ) -> None:
        EvolvablePlayer.__init__(self, seed=seed)
        lookup_dict, initial_actions, pattern, parameters, mutation_probability = self._normalize_parameters(
            lookup_dict, initial_actions, pattern, parameters, mutation_probability
        )
        LookerUp.__init__(
            self,
            lookup_dict=lookup_dict,
            initial_actions=initial_actions,
            pattern=pattern,
            parameters=parameters,
        )
        self.mutation_probability = mutation_probability
        self.overwrite_init_kwargs(
            lookup_dict=lookup_dict,
            initial_actions=initial_actions,
            pattern=pattern,
            parameters=parameters,
            mutation_probability=mutation_probability,
        )

    def _normalize_parameters(self, lookup_dict=None, initial_actions=None, pattern=None, parameters=None,
                              mutation_probability=None):
        if lookup_dict and initial_actions:
            # Compute the associated pattern and parameters
            # Map the table keys to namedTuple Plays
            lookup_table = self._get_lookup_table(lookup_dict, pattern, parameters)
            lookup_dict = lookup_table.dictionary
            parameters = (lookup_table.player_depth, lookup_table.op_depth, lookup_table.op_openings_depth)
            pattern = tuple(v for k, v in sorted(lookup_dict.items()))
        elif pattern and parameters and initial_actions:
            # Compute the associated lookup table
            plays, op_plays, op_start_plays = parameters
            lookup_table = self._get_lookup_table(lookup_dict, pattern, parameters)
            lookup_dict = lookup_table.dictionary
        elif parameters:
            # Generate a random pattern and (maybe) initial actions
            plays, op_plays, op_start_plays = parameters
            pattern, lookup_table = self.random_params(plays, op_plays, op_start_plays)
            lookup_dict = lookup_table.dictionary
            if not initial_actions:
                num_actions = max([plays, op_plays, op_start_plays])
                initial_actions = tuple([self._random.choice((C, D)) for _ in range(num_actions)])
        else:
            raise InsufficientParametersError("Insufficient Parameters to instantiate EvolvableLookerUp")
        # Normalize pattern
        if isinstance(pattern, str):
            pattern = str_to_actions(pattern)
        pattern = tuple(pattern)
        if mutation_probability is None:
            plays, op_plays, op_start_plays = parameters
            keys = create_lookup_table_keys(plays, op_plays, op_start_plays)
            mutation_probability = 2. / len(keys)
        return lookup_dict, initial_actions, pattern, parameters, mutation_probability

    def random_value(self):
        return self._random.choice(actions)

    def random_params(self, plays, op_plays, op_start_plays):
        keys = create_lookup_table_keys(plays, op_plays, op_start_plays)
        # To get a pattern, we just randomly pick between C and D for each key
        pattern = [self.random_value() for _ in keys]
        table = dict(zip(keys, pattern))
        return pattern, LookupTable(table)

    @classmethod
    def mutate_value(cls, value):
        return value.flip()

    def mutate_table(self, table, mutation_probability):
        randoms = self._random.random(len(table.keys()))
        # Flip each value with a probability proportional to the mutation rate
        for i, (history, move) in enumerate(table.items()):
            if randoms[i] < mutation_probability:
                table[history] = self.mutate_value(move)
        return table

[docs]    def mutate(self):
        lookup_dict = self.mutate_table(self.lookup_dict, self.mutation_probability)
        # Add in starting moves
        initial_actions = list(self.initial_actions)
        for i in range(len(initial_actions)):
            r = self._random.random()
            if r < self.mutation_probability:
                initial_actions[i] = initial_actions[i].flip()
        return self.create_new(
            lookup_dict=lookup_dict,
            initial_actions=tuple(initial_actions),
        )


[docs]    def crossover(self, other):
        if other.__class__ != self.__class__:
            raise TypeError("Crossover must be between the same player classes.")
        lookup_dict = crossover_dictionaries(self.lookup_dict, other.lookup_dict, self._random)
        return self.create_new(lookup_dict=lookup_dict)




[docs]class EvolvedLookerUp1_1_1(LookerUp):
    """
    A 1 1 1 Lookerup trained with an evolutionary algorithm.

    Names:

    - Evolved Lookerup 1 1 1: Original name by Marc Harper
    """

    name = "EvolvedLookerUp1_1_1"

    def __init__(self) -> None:
        params = Plays(self_plays=1, op_plays=1, op_openings=1)
        super().__init__(parameters=params, pattern="CDDDDCDD", initial_actions=(C,))



[docs]class EvolvedLookerUp2_2_2(LookerUp):
    """
    A 2 2 2 Lookerup trained with an evolutionary algorithm.

    Names:

    - Evolved Lookerup 2 2 2: Original name by Marc Harper
    """

    name = "EvolvedLookerUp2_2_2"

    def __init__(self) -> None:
        params = Plays(self_plays=2, op_plays=2, op_openings=2)
        pattern = "CDDCDCDDCDDDCDDDDDCDCDCCCDDCCDCDDDCCCCCDDDCDDDDDDDDDCCDDCDDDCCCD"
        super().__init__(parameters=params, pattern=pattern, initial_actions=(C, C))



[docs]class Winner12(LookerUp):
    """
    A lookup table based strategy.

    Names:

    - Winner12: [Mathieu2015]_
    """

    name = "Winner12"

    def __init__(self) -> None:
        params = Plays(self_plays=1, op_plays=2, op_openings=0)
        pattern = "CDCDDCDD"
        super().__init__(parameters=params, pattern=pattern, initial_actions=(C, C))



[docs]class Winner21(LookerUp):
    """
    A lookup table based strategy.

    Names:

    - Winner21: [Mathieu2015]_
    """

    name = "Winner21"

    def __init__(self) -> None:
        params = Plays(self_plays=1, op_plays=2, op_openings=0)
        pattern = "CDCDCDDD"
        super().__init__(parameters=params, pattern=pattern, initial_actions=(D, C))



[docs]def get_last_n_plays(player: Player, depth: int) -> tuple:
    """Returns the last N plays of player as a tuple."""
    if depth == 0:
        return ()
    return tuple(player.history[-1 * depth :])





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.mathematicalconstants

import math

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class CotoDeRatio(Player):
    """The player will always aim to bring the ratio of co-operations to
    defections closer to the ratio as given in a sub class

    Names:

    - Co to Do Ratio: Original Name by Timothy Standen
    """

    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        # Initially cooperate
        if len(opponent.history) == 0:
            return C
        # Avoid initial division by zero
        if not opponent.defections:
            return D
        # Otherwise compare ratio to golden mean
        cooperations = opponent.cooperations + self.cooperations
        defections = opponent.defections + self.defections
        if cooperations / defections > self.ratio:
            return D
        return C




[docs]class Golden(CotoDeRatio):
    """The player will always aim to bring the ratio of co-operations to
    defections closer to the golden mean

    Names:

    - Golden: Original Name by Timothy Standen
    """

    name = "$\phi$"
    ratio = (1 + math.sqrt(5)) / 2



[docs]class Pi(CotoDeRatio):
    """The player will always aim to bring the ratio of co-operations to
    defections closer to the pi

    Names:

    - Pi: Original Name by Timothy Standen
    """

    name = "$\pi$"
    ratio = math.pi



[docs]class e(CotoDeRatio):
    """The player will always aim to bring the ratio of co-operations to
    defections closer to the e

    Names:

    - e: Original Name by Timothy Standen
    """

    name = "$e$"
    ratio = math.e





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.memoryone

"""Memory One strategies. Note that there are Memory One strategies in other
files, including titfortat.py and zero_determinant.py"""

import warnings
from typing import Tuple

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class WinStayLoseShift(Player):
    """
    Win-Stay Lose-Shift, also called Pavlov.

    Names:

    - Win Stay Lose Shift: [Nowak1993]_
    - WSLS: [Stewart2012]_
    - Pavlov: [Kraines1989]_
    """

    name = "Win-Stay Lose-Shift"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector
        "stochastic": False,
        "makes_use_of": set(),
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return C
        # React to the opponent's last move
        last_round = (self.history[-1], opponent.history[-1])
        if last_round == (C, C) or last_round == (D, D):
            return C
        return D




[docs]class MemoryOnePlayer(Player):
    """
    Uses a four-vector for strategies based on the last round of play,
    (P(C|CC), P(C|CD), P(C|DC), P(C|DD)). Win-Stay Lose-Shift is set as
    the default player if four_vector is not given.
    Intended to be used as an abstract base class or to at least be supplied
    with a initializing four_vector.

    Names

    - Memory One: [Nowak1990]_
    """

    name = "Generic Memory One Player"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self, four_vector: Tuple[float, float, float, float] = None, initial: Action = C
    ) -> None:
        """
        Parameters
        ----------
        four_vector: list or tuple of floats of length 4
            The response probabilities to the preceding round of play
            ( P(C|CC), P(C|CD), P(C|DC), P(C|DD) )
        initial: C or D
            The initial move

        Special Cases
        -------------

        Alternator is equivalent to MemoryOnePlayer((0, 0, 1, 1), C)
        Cooperator is equivalent to MemoryOnePlayer((1, 1, 1, 1), C)
        Defector   is equivalent to MemoryOnePlayer((0, 0, 0, 0), D)
        Random     is equivalent to MemoryOnePlayer((0.5, 0.5, 0.5, 0.5))
        (with a random choice for the initial state)
        TitForTat  is equivalent to MemoryOnePlayer((1, 0, 1, 0), C)
        WinStayLoseShift is equivalent to MemoryOnePlayer((1, 0, 0, 1), C)

        See also: The remaining strategies in this file
                  Multiple strategies in titfortat.py
                  Grofman, Joss in axelrod_tournaments.py
        """
        super().__init__()
        self._initial = initial
        self.set_initial_four_vector(four_vector)

    def set_initial_four_vector(self, four_vector):
        if four_vector is None:
            four_vector = (1, 0, 0, 1)
            warnings.warn("Memory one player is set to default (1, 0, 0, 1).")

        self.set_four_vector(four_vector)

    def set_four_vector(self, four_vector: Tuple[float, float, float, float]):
        if not all(0 <= p <= 1 for p in four_vector):
            raise ValueError(
                "An element in the probability vector, {}, is not "
                "between 0 and 1.".format(str(four_vector))
            )
        self._four_vector = dict(zip([(C, C), (C, D), (D, C), (D, D)], four_vector))

    def _post_init(self):
        # Adjust classifiers
        values = set(self._four_vector.values())
        self.classifier["stochastic"] = any(0 < x < 1 for x in values)
        if all(x == 0 for x in values) or all(x == 1 for x in values):
            self.classifier["memory_depth"] = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) == 0:
            return self._initial
        # Determine which probability to use
        p = self._four_vector[(self.history[-1], opponent.history[-1])]
        # Draw a random number in [0, 1] to decide
        try:
            return self._random.random_choice(p)
        except AttributeError:
            return D if p == 0 else C




[docs]class WinShiftLoseStay(MemoryOnePlayer):
    """Win-Shift Lose-Stay, also called Reverse Pavlov.

    Names:

    - WSLS: [Li2011]_
    """

    name = "Win-Shift Lose-Stay"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, initial: Action = D) -> None:
        four_vector = (0, 1, 1, 0)
        super().__init__(four_vector)
        self._initial = initial



[docs]class GTFT(MemoryOnePlayer):
    """Generous Tit For Tat Strategy.

    Names:

    - Generous Tit For Tat: [Nowak1993]_
    - Naive peace maker: [Gaudesi2016]_
    - Soft Joss: [Gaudesi2016]_
    """

    name = "GTFT"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, p: float = None) -> None:
        """
        Parameters

        p, float
            A parameter used to compute the four-vector

        Special Cases

        TitForTat is equivalent to GTFT(0)
        """
        self.p = p
        super().__init__()

    def set_initial_four_vector(self, four_vector):
        pass

    def receive_match_attributes(self):
        (R, P, S, T) = self.match_attributes["game"].RPST()
        if self.p is None:
            self.p = min(1 - (T - R) / (R - S), (R - P) / (T - P))
        four_vector = [1, self.p, 1, self.p]
        self.set_four_vector(four_vector)

    def __repr__(self) -> str:
        assert self.p is not None
        return "%s: %s" % (self.name, round(self.p, 2))



[docs]class FirmButFair(MemoryOnePlayer):
    """A strategy that cooperates on the first move, and cooperates except after
    receiving a sucker payoff.

    Names:

    - Firm But Fair: [Frean1994]_"""

    name = "Firm But Fair"

    def __init__(self) -> None:
        four_vector = (1, 0, 1, 2 / 3)
        super().__init__(four_vector)
        self.set_four_vector(four_vector)



[docs]class StochasticCooperator(MemoryOnePlayer):
    """Stochastic Cooperator.

    Names:

    - Stochastic Cooperator: [Adami2013]_
    """

    name = "Stochastic Cooperator"

    def __init__(self) -> None:
        four_vector = (0.935, 0.229, 0.266, 0.42)
        super().__init__(four_vector)
        self.set_four_vector(four_vector)



[docs]class StochasticWSLS(MemoryOnePlayer):
    """
    Stochastic WSLS, similar to Generous TFT. Note that this is not the same as
    Stochastic WSLS described in [Amaral2016]_, that strategy is a modification
    of WSLS that learns from the performance of other strategies.

    Names:

    - Stochastic WSLS: Original name by Marc Harper
    """

    name = "Stochastic WSLS"

    def __init__(self, ep: float = 0.05) -> None:
        """
        Parameters

        ep, float
            A parameter used to compute the four-vector -- the probability of
            cooperating when the previous round was CD or DC

        Special Cases

        WinStayLoseShift is equivalent to StochasticWSLS(0)
        """

        self.ep = ep
        four_vector = (1.0 - ep, ep, ep, 1.0 - ep)
        super().__init__(four_vector)
        self.set_four_vector(four_vector)



[docs]class SoftJoss(MemoryOnePlayer):
    """
    Defects with probability 0.9 when the opponent defects, otherwise
    emulates Tit-For-Tat.

    Names:

    - Soft Joss: [Prison1998]_
    """

    name = "Soft Joss"

    def __init__(self, q: float = 0.9) -> None:
        """
        Parameters

        q, float
            A parameter used to compute the four-vector

        Special Cases

        Cooperator is equivalent to SoftJoss(0)
        TitForTat  is equivalent to SoftJoss(1)
        """
        self.q = q
        four_vector = (1.0, 1 - q, 1, 1 - q)
        super().__init__(four_vector)

    def __repr__(self) -> str:
        return "%s: %s" % (self.name, round(self.q, 2))



[docs]class ALLCorALLD(Player):
    """This strategy is at the parameter extreme of the ZD strategies (phi = 0).
    It simply repeats its last move, and so mimics ALLC or ALLD after round one.
    If the tournament is noisy, there will be long runs of C and D.

    For now starting choice is random of 0.6, but that was an arbitrary choice
    at implementation time.

    Names:

    - ALLC or ALLD: Original name by Marc Harper
    - Repeat: [Akin2015]_
    """

    name = "ALLCorALLD"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector (1, 1, 0, 0)
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return self._random.random_choice(0.6)
        return self.history[-1]




[docs]class ReactivePlayer(MemoryOnePlayer):
    """
    A generic reactive player. Defined by 2 probabilities conditional on the
    opponent's last move: P(C|C), P(C|D).

    Names:

    - Reactive: [Nowak1989]_
    """

    name = "Reactive Player"

    def __init__(self, probabilities: Tuple[float, float]) -> None:
        four_vector = (*probabilities, *probabilities)
        super().__init__(four_vector)





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.memorytwo

"""Memory Two strategies."""

import itertools
import warnings
from typing import Dict, Optional, Tuple

from axelrod.action import Action
from axelrod.player import Player

from .defector import Defector
from .titfortat import TitFor2Tats, TitForTat

C, D = Action.C, Action.D


[docs]class MemoryTwoPlayer(Player):
    """
    Uses a sixteen-vector for strategies based on the 16 conditional probabilities
    P(X | I,J,K,L) where X, I, J, K, L in [C, D] and I, J are the players last
    two moves and K, L are the opponents last two moves. These conditional
    probabilities are the following:
    1.  P(C|CC, CC)
    2.  P(C|CC, CD)
    3.  P(C|CC, DC)
    4.  P(C|CC, DD)
    5.  P(C|CD, CC)
    6.  P(C|CD, CD)
    7.  P(C|CD, DC)
    8.  P(C|CD, DD)
    9.  P(C|DC, CC)
    10. P(C|DC, CD)
    11. P(C|DC, DC)
    12. P(C|DC, DD)
    13. P(C|DD, CC)
    14. P(C|DD, CD)
    15. P(C|DD, DC)
    16. P(C|DD, DD)
    Cooperator is set as the default player if sixteen_vector is not given.

    Names

    - Memory Two: [Hilbe2017]_
    """

    name = "Generic Memory Two Player"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self, sixteen_vector: Optional[Tuple[float, ...]] = None, initial: Optional[Tuple[Action, Action]] = None
    ) -> None:
        """
        Parameters
        ----------
        sixteen_vector: list or tuple of floats of length 16
            The response probabilities to the preceding round of play
        initial: (Action, Action)
            The initial 2 moves
        """
        super().__init__()
        if initial is None:
            initial = (C, C)
        self._initial = initial
        self.set_initial_sixteen_vector(sixteen_vector)

    def set_initial_sixteen_vector(self, sixteen_vector: Optional[Tuple[float, ...]]):
        if sixteen_vector is None:
            sixteen_vector = tuple([1] * 16)
            warnings.warn("Memory two player is set to default, Cooperator.")

        self.set_sixteen_vector(sixteen_vector)

    def set_sixteen_vector(self, sixteen_vector: Tuple[float, ...]):
        if not all(0 <= p <= 1 for p in sixteen_vector):
            raise ValueError(
                "An element in the probability vector, {}, is not "
                "between 0 and 1.".format(str(sixteen_vector))
            )

        states = [
            (hist[:2], hist[2:]) for hist in list(itertools.product((C, D), repeat=4))
        ]

        self._sixteen_vector = dict(
            zip(states, sixteen_vector)
        )  # type: Dict[tuple, float]

    @staticmethod
    def compute_memory_depth(sixteen_vector: Dict[Tuple[Action, Action], float]) -> int:
        values = set(list(sixteen_vector.values()))

        # Memory-depth 0
        if all(x == 0 for x in values) or all(x == 1 for x in values):
            return 0

        is_memory_one = True
        d = sixteen_vector
        contexts = [(C, C), (C, D), (D, C), (D, D)]

        for c1 in contexts:
            values = set()
            i, j = c1
            for c2 in contexts:
                x, y = c2
                values.add(d[((x, i), (y, j))])
            if len(values) > 1:
                is_memory_one = False
                break
        if is_memory_one:
            return 1
        return 2

    def _post_init(self):
        values = set(self._sixteen_vector.values())
        self.classifier["stochastic"] = any(0 < x < 1 for x in values)
        self.classifier["memory_depth"] = self.compute_memory_depth(self._sixteen_vector)

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn <= 1:
            return self._initial[turn]
        # Determine which probability to use
        p = self._sixteen_vector[
            (tuple(self.history[-2:]), tuple(opponent.history[-2:]))
        ]
        # Draw a random number in [0, 1] to decide
        try:
            return self._random.random_choice(p)
        except AttributeError:
            return C if p == 1 else D




[docs]class AON2(MemoryTwoPlayer):
    """
    AON2 a memory two strategy introduced in [Hilbe2017]_. It belongs to the
    AONk (all-or-none) family of strategies. These strategies were designed to
    satisfy the three following properties:

    1. Mutually Cooperative. A strategy is mutually cooperative if there are
    histories for which the strategy prescribes to cooperate, and if it continues
    to cooperate after rounds with mutual cooperation (provided the last k actions
    of the focal player were actually consistent).

    2. Error correcting. A strategy is error correcting after at most k rounds if,
    after any history, it generally takes a group of players at most k + 1 rounds
    to re-establish mutual cooperation.

    3. Retaliating. A strategy is retaliating for at least k rounds if, after
    rounds in which the focal player cooperated while the coplayer defected,
    the strategy responds by defecting the following k rounds.

    In [Hilbe2017]_ the following vectors are reported as "equivalent" to AON2
    with their respective self-cooperation rate (note that these are not the same):

    1. [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], self-cooperation
    rate: 0.952
    2. [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], self-cooperation
    rate: 0.951
    3. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], self-cooperation
    rate:  0.951
    4. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1], self-cooperation
    rate: 0.952

    AON2 is implemented using vector 1 due its self-cooperation rate.

    In essence it is a strategy that starts off by cooperating and will cooperate
    again only after the states (CC, CC), (CD, CD), (DC, DC), (DD, DD).

    Names:

    - AON2: [Hilbe2017]_
    """

    name = "AON2"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        sixteen_vector = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)
        super().__init__(sixteen_vector)



[docs]class DelayedAON1(MemoryTwoPlayer):
    """
    Delayed AON1 a memory two strategy also introduced in [Hilbe2017]_ and belongs
    to the AONk family. Note that AON1 is equivalent to Win Stay Lose Shift.

    In [Hilbe2017]_ the following vectors are reported as "equivalent" to Delayed
    AON1 with their respective self-cooperation rate (note that these are not the
    same):

    1. [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], self-cooperation
    rate: 0.952
    2. [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], self-cooperation
    rate: 0.970
    3. [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1], self-cooperation
    rate: 0.971

    Delayed AON1 is implemented using vector 3 due its self-cooperation rate.

    In essence it is a strategy that starts off by cooperating and will cooperate
    again only after the states (CC, CC), (CD, CD), (CD, DD), (DD, CD),
    (DC, DC) and (DD, DD).

    Names:

    - Delayed AON1: [Hilbe2017]_
    """

    name = "Delayed AON1"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        sixteen_vector = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)
        super().__init__(sixteen_vector)



[docs]class MEM2(Player):
    """A memory-two player that switches between TFT, TFTT, and ALLD.

    Note that the reference claims that this is a memory two strategy but in
    fact it is infinite memory. This is because the player plays as ALLD if
    ALLD has ever been selected twice, which can only be known if the entire
    history of play is accessible.

    Names:

    - MEM2: [Li2014]_
    """

    name = "MEM2"
    classifier = {
        "memory_depth": float("inf"),
        "long_run_time": False,
        "stochastic": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.players = {"TFT": TitForTat(), "TFTT": TitFor2Tats(), "ALLD": Defector()}
        self.play_as = "TFT"
        self.shift_counter = 3
        self.alld_counter = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        # Update Histories
        # Note that this assumes that TFT and TFTT do not use internal counters,
        # Rather that they examine the actual history of play
        if len(self.history) > 0:
            for v in self.players.values():
                v.history.append(self.history[-1], opponent.history[-1])
        self.shift_counter -= 1
        if (self.shift_counter == 0) and (self.alld_counter < 2):
            self.shift_counter = 2
            # Depending on the last two moves, play as TFT, TFTT, or ALLD
            last_two = list(zip(self.history[-2:], opponent.history[-2:]))
            if set(last_two) == set([(C, C)]):
                self.play_as = "TFT"
            elif set(last_two) == set([(C, D), (D, C)]):
                self.play_as = "TFTT"
            else:
                self.play_as = "ALLD"
                self.alld_counter += 1
        return self.players[self.play_as].strategy(opponent)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.meta

import numpy as np
from axelrod.action import Action
from axelrod.classifier import Classifiers
from axelrod.player import Player
from axelrod.strategies import TitForTat
from axelrod.strategy_transformers import NiceTransformer

from ._strategies import all_strategies
from .hunter import (
    AlternatorHunter,
    CooperatorHunter,
    CycleHunter,
    DefectorHunter,
    EventualCycleHunter,
    MathConstantHunter,
    RandomHunter,
)

# Needs to be computed manually to prevent circular dependency
ordinary_strategies = [
    s for s in all_strategies if Classifiers.obey_axelrod(s())
]

C, D = Action.C, Action.D


[docs]class MetaPlayer(Player):
    """
    A generic player that has its own team of players.

    Names:

    - Meta Player: Original name by Karol Langner
    """

    name = "Meta Player"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, team=None):
        # The default is to use all strategies available, but we need to import
        # the list at runtime, since _strategies import also _this_ module
        # before defining the list.
        if team:
            self.team = team
        else:
            self.team = ordinary_strategies
        # Make sure we don't use any meta players to avoid infinite recursion.
        self.team = [t for t in self.team if not issubclass(t, MetaPlayer)]
        # Initiate all the players in our team.
        self.team = [t() for t in self.team]
        self._last_results = None
        super().__init__()

    def _post_init(self):
        # The player's classification characteristics are derived from the team.
        # Note that memory_depth is not simply the max memory_depth of the team.
        for key in [
            "stochastic",
            "inspects_source",
            "manipulates_source",
            "manipulates_state",
        ]:
            self.classifier[key] = any(map(Classifiers[key], self.team))

        self.classifier["makes_use_of"] = set()
        for t in self.team:
            new_uses = Classifiers["makes_use_of"](t)
            if new_uses:
                self.classifier["makes_use_of"].update(new_uses)

[docs]    def set_seed(self, seed=None):
        super().set_seed(seed=seed)
        # Seed the team as well
        for t in self.team:
            t.set_seed(self._random.random_seed_int())


    def receive_match_attributes(self):
        for t in self.team:
            t.set_match_attributes(**self.match_attributes)

    def __repr__(self):
        team_size = len(self.team)
        return "{}: {} player{}".format(
            self.name, team_size, "s" if team_size > 1 else ""
        )

    def update_histories(self, coplay):
        # Update team histories.
        try:
            for player, play in zip(self.team, self._last_results):
                player.update_history(play, coplay)
        except TypeError:
            # If the Meta class is decorated by the Joss-Ann transformer,
            # such that the decorated class is now deterministic, the underlying
            # strategy isn't called. In that case, updating the history of all the
            # team members doesn't matter.
            # As a sanity check, look for at least one reclassifier, otherwise
            # this try-except clause could hide a bug.
            if len(self._reclassifiers) == 0:
                raise TypeError("MetaClass update_histories issue, expected a reclassifier.")
            # Otherwise just update with C always, so at least the histories have the
            # expected length.
            for player in self.team:
                player.update_history(C, coplay)

    def update_history(self, play, coplay):
        super().update_history(play, coplay)
        self.update_histories(coplay)

[docs]    def strategy(self, opponent):
        # Get the results of all our players.
        results = []
        for player in self.team:
            play = player.strategy(opponent)
            results.append(play)
        self._last_results = results
        # A subclass should just define a way to choose the result based on
        # team results.
        return self.meta_strategy(results, opponent)


[docs]    def meta_strategy(self, results, opponent):
        """Determine the meta result based on results of all players.
        Override this function in child classes."""
        return C




[docs]class MetaMajority(MetaPlayer):
    """A player who goes by the majority vote of all other non-meta players.

    Names:

    - Meta Majority: Original name by Karol Langner
    """

    name = "Meta Majority"

[docs]    @staticmethod
    def meta_strategy(results, opponent):
        if results.count(D) > results.count(C):
            return D
        return C




[docs]class MetaMinority(MetaPlayer):
    """A player who goes by the minority vote of all other non-meta players.

    Names:

    - Meta Minority: Original name by Karol Langner
    """

    name = "Meta Minority"

[docs]    @staticmethod
    def meta_strategy(results, opponent):
        if results.count(D) < results.count(C):
            return D
        return C




[docs]class MetaWinner(MetaPlayer):
    """A player who goes by the strategy of the current winner.

    Names:

    - Meta Winner: Original name by Karol Langner
    """

    name = "Meta Winner"

    def __init__(self, team=None):
        super().__init__(team=team)
        # For each player, we will keep the history of proposed moves and
        # a running score since the beginning of the game.
        self.scores = np.zeros(len(self.team))
        self.classifier["long_run_time"] = True

    def _update_scores(self, coplay):
        # Update the running score for each player, before determining the
        # next move.
        game = self.match_attributes["game"]
        scores = []
        for player in self.team:
            last_round = (player.history[-1], coplay)
            s = game.scores[last_round][0]
            scores.append(s)
        self.scores += np.array(scores)

    def update_histories(self, coplay):
        super().update_histories(coplay)
        self._update_scores(coplay)

[docs]    def meta_strategy(self, results, opponent):
        # Choose an action based on the collection of scores
        bestscore = max(self.scores)
        beststrategies = [
            i for (i, score) in enumerate(self.scores) if score == bestscore
        ]
        bestproposals = [results[i] for i in beststrategies]
        bestresult = C if C in bestproposals else D
        return bestresult




NiceMetaWinner = NiceTransformer()(MetaWinner)


[docs]class MetaWinnerEnsemble(MetaWinner):
    """A variant of MetaWinner that chooses one of the top scoring strategies
    at random against each opponent. Note this strategy is always stochastic
    regardless of the team, if team larger than 1, and the players are distinct.

    Names:

    - Meta Winner Ensemble: Original name by Marc Harper
    """

    name = "Meta Winner Ensemble"

    def _post_init(self):
        super()._post_init()
        team = list(t.__class__ for t in self.team)
        if len(team) > 1:
            self.classifier["stochastic"] = True
            self.singular = False
        else:
            self.singular = True
        # If the team has repeated identical members, then it reduces to a singular team
        # and it may not actually be stochastic.
        if team and len(set(team)) == 1:
            self.classifier["stochastic"] = Classifiers["stochastic"](self.team[0])
            self.singular = True

[docs]    def meta_strategy(self, results, opponent):
        # If the team consists of identical players, just take the first result.
        # This prevents an unnecessary call to _random below.
        if self.singular:
            return results[0]
        # Sort by score
        scores = [(score, i) for (i, score) in enumerate(self.scores)]
        # Choose one of the best scorers at random
        scores.sort(reverse=True)
        prop = max(1, int(len(scores) * 0.08))
        best_scorers = [i for (s, i) in scores[:prop]]
        index = self._random.choice(best_scorers)
        return results[index]




NiceMetaWinnerEnsemble = NiceTransformer()(MetaWinnerEnsemble)


[docs]class MetaHunter(MetaPlayer):
    """A player who uses a selection of hunters.

    Names

    - Meta Hunter: Original name by Karol Langner
    """

    name = "Meta Hunter"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        # Notice that we don't include the cooperator hunter, because it leads
        # to excessive defection and therefore bad performance against
        # unforgiving strategies. We will stick to hunters that use defections
        # as cues. However, a really tangible benefit comes from combining
        # Random Hunter and Math Constant Hunter, since together they catch
        # strategies that are lightly randomized but still quite constant
        # (the tricky/suspicious ones).
        team = [
            DefectorHunter,
            AlternatorHunter,
            RandomHunter,
            MathConstantHunter,
            CycleHunter,
            EventualCycleHunter,
        ]

        super().__init__(team=team)

[docs]    @staticmethod
    def meta_strategy(results, opponent):
        # If any of the hunters smells prey, then defect!
        if D in results:
            return D

        # Tit-for-tat might seem like a better default choice, but in many
        # cases it complicates the heuristics of hunting and creates
        # false-positives. So go ahead and use it, but only for longer
        # histories.
        if len(opponent.history) > 100:
            return D if opponent.history[-1:] == [D] else C
        else:
            return C




[docs]class MetaHunterAggressive(MetaPlayer):
    """A player who uses a selection of hunters.

    Names

    - Meta Hunter Aggressive: Original name by Marc Harper
    """

    name = "Meta Hunter Aggressive"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, team=None):
        # This version uses CooperatorHunter
        if team is None:
            team = [
                DefectorHunter,
                AlternatorHunter,
                RandomHunter,
                MathConstantHunter,
                CycleHunter,
                EventualCycleHunter,
                CooperatorHunter,
            ]

        super().__init__(team=team)

[docs]    @staticmethod
    def meta_strategy(results, opponent):
        # If any of the hunters smells prey, then defect!
        if D in results:
            return D

        # Tit-for-tat might seem like a better default choice, but in many
        # cases it complicates the heuristics of hunting and creates
        # false-positives. So go ahead and use it, but only for longer
        # histories.
        if len(opponent.history) > 100:
            return D if opponent.history[-1:] == [D] else C
        else:
            return C




[docs]class MetaMajorityMemoryOne(MetaMajority):
    """MetaMajority with the team of Memory One players

    Names

    - Meta Majority Memory One: Original name by Marc Harper
    """

    name = "Meta Majority Memory One"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) <= 1
        ]
        super().__init__(team=team)
        self.classifier["long_run_time"] = False



[docs]class MetaMajorityFiniteMemory(MetaMajority):
    """MetaMajority with the team of Finite Memory Players

    Names

    - Meta Majority Finite Memory: Original name by Marc Harper
    """

    name = "Meta Majority Finite Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) < float("inf")
        ]
        super().__init__(team=team)



[docs]class MetaMajorityLongMemory(MetaMajority):
    """MetaMajority with the team of Long (infinite) Memory Players

    Names

    - Meta Majority Long Memory: Original name by Marc Harper
    """

    name = "Meta Majority Long Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) == float("inf")
        ]
        super().__init__(team=team)



[docs]class MetaWinnerMemoryOne(MetaWinner):
    """MetaWinner with the team of Memory One players

    Names

    - Meta Winner Memory Memory One: Original name by Marc Harper
    """

    name = "Meta Winner Memory One"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) <= 1
        ]
        super().__init__(team=team)
        self.classifier["long_run_time"] = False



[docs]class MetaWinnerFiniteMemory(MetaWinner):
    """MetaWinner with the team of Finite Memory Players

    Names

    - Meta Winner Finite Memory: Original name by Marc Harper
    """

    name = "Meta Winner Finite Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) < float("inf")
        ]
        super().__init__(team=team)



[docs]class MetaWinnerLongMemory(MetaWinner):
    """MetaWinner with the team of Long (infinite) Memory Players

    Names

    - Meta Winner Long Memory: Original name by Marc Harper
    """

    name = "Meta Winner Long Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) == float("inf")
        ]
        super().__init__(team=team)



[docs]class MetaWinnerDeterministic(MetaWinner):
    """Meta Winner with the team of Deterministic Players.

    Names

    - Meta Winner Deterministic: Original name by Marc Harper
    """

    name = "Meta Winner Deterministic"

    def __init__(self):
        team = [
            s for s in ordinary_strategies if not Classifiers["stochastic"](s())
        ]
        super().__init__(team=team)
        self.classifier["stochastic"] = False



[docs]class MetaWinnerStochastic(MetaWinner):
    """Meta Winner with the team of Stochastic Players.

    Names

    - Meta Winner Stochastic: Original name by Marc Harper
    """

    name = "Meta Winner Stochastic"

    def __init__(self):
        team = [
            s for s in ordinary_strategies if Classifiers["stochastic"](s())
        ]
        super().__init__(team=team)



[docs]class MetaMixer(MetaPlayer):
    """A player who randomly switches between a team of players.
    If no distribution is passed then the player will uniformly choose between
    sub players.

    In essence this is creating a Mixed strategy.

    Parameters

    team : list of strategy classes, optional
        Team of strategies that are to be randomly played
        If none is passed will select the ordinary strategies.
    distribution : list representing a probability distribution, optional
        This gives the distribution from which to select the players.
        If none is passed will select uniformly.

    Names

    - Meta Mixer: Original name by Vince Knight
    """

    name = "Meta Mixer"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, team=None, distribution=None):
        super().__init__(team=team)
        # Check that distribution is not all zeros, which will make numpy unhappy.
        if distribution and all(x == 0 for x in distribution):
            distribution = None
        self.distribution = distribution

    def _post_init(self):
        distribution = self.distribution
        if distribution and len(set(distribution)) > 1:
            self.classifier["stochastic"] = True
        if len(self.team) == 1:
            self.classifier["stochastic"] = Classifiers["stochastic"](self.team[0])
            # Overwrite strategy to avoid use of _random. This will ignore self.meta_strategy.
            self.index = 0
            self.strategy = self.index_strategy
            return
        # Check if the distribution has only one non-zero value. If so, the strategy may be
        # deterministic, and we can avoid _random.
        if distribution:
            total = sum(distribution)
            distribution = np.array(distribution) / total
            if 1 in distribution:
                self.index = list(distribution).index(1)
                # It's potentially deterministic.
                self.classifier["stochastic"] = Classifiers["stochastic"](self.team[self.index])
                # Overwrite strategy to avoid use of _random. This will ignore self.meta_strategy.
                self.strategy = self.index_strategy

[docs]    def index_strategy(self, opponent):
        """When the team effectively has a single player, only use that strategy."""
        results = [C] * len(self.team)
        player = self.team[self.index]
        action = player.strategy(opponent)
        results[self.index] = action
        self._last_results = results
        return action


[docs]    def meta_strategy(self, results, opponent):
        """Using the _random.choice function to sample with weights."""
        return self._random.choice(results, p=self.distribution)




[docs]class NMWEDeterministic(NiceMetaWinnerEnsemble):
    """Nice Meta Winner Ensemble with the team of Deterministic Players.

    Names

    - Nice Meta Winner Ensemble Deterministic: Original name by Marc Harper
    """

    name = "NMWE Deterministic"

    def __init__(self):
        team = [
            s for s in ordinary_strategies if not Classifiers["stochastic"](s())
        ]
        super().__init__(team=team)
        self.classifier["stochastic"] = True



[docs]class NMWEStochastic(NiceMetaWinnerEnsemble):
    """Nice Meta Winner Ensemble with the team of Stochastic Players.

    Names

    - Nice Meta Winner Ensemble Stochastic: Original name by Marc Harper
    """

    name = "NMWE Stochastic"

    def __init__(self):
        team = [
            s for s in ordinary_strategies if Classifiers["stochastic"](s())
        ]
        super().__init__(team=team)



[docs]class NMWEFiniteMemory(NiceMetaWinnerEnsemble):
    """Nice Meta Winner Ensemble with the team of Finite Memory Players.

    Names

    - Nice Meta Winner Ensemble Finite Memory: Original name by Marc Harper
    """

    name = "NMWE Finite Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) < float("inf")
        ]
        super().__init__(team=team)



[docs]class NMWELongMemory(NiceMetaWinnerEnsemble):
    """Nice Meta Winner Ensemble with the team of Long Memory Players.

    Names

    - Nice Meta Winner Ensemble Long Memory: Original name by Marc Harper
    """

    name = "NMWE Long Memory"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) == float("inf")
        ]
        super().__init__(team=team)



[docs]class NMWEMemoryOne(NiceMetaWinnerEnsemble):
    """Nice Meta Winner Ensemble with the team of Memory One Players.

    Names

    - Nice Meta Winner Ensemble Memory One: Original name by Marc Harper
    """

    name = "NMWE Memory One"

    def __init__(self):
        team = [
            s
            for s in ordinary_strategies
            if Classifiers["memory_depth"](s()) <= 1
        ]
        super().__init__(team=team)
        self.classifier["long_run_time"] = False



[docs]class MemoryDecay(MetaPlayer):
    """
    A player utilizes the (default) Tit for Tat strategy for the first (default) 15 turns,
    at the same time memorizing the opponent's decisions. After the 15 turns have
    passed, the player calculates a 'net cooperation score' (NCS) for their opponent,
    weighing decisions to Cooperate as (default) 1, and to Defect as (default)
    -2. If the opponent's NCS is below 0, the player defects; otherwise,
    they cooperate.

    The player's memories of the opponent's decisions have a random chance to be
    altered (i.e., a C decision becomes D or vice versa; default probability
    is 0.03) or deleted (default probability is 0.1).

    It is possible to pass a different axelrod player class to change the initial
    player behavior.

    Name: Memory Decay
    """

    name = "Memory Decay"
    classifier = {
        "memory_depth": float("inf"),
        "long_run_time": False,
        "stochastic": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self,
        p_memory_delete: float = 0.1,
        p_memory_alter: float = 0.03,
        loss_value: float = -2,
        gain_value: float = 1,
        memory: list = None,
        start_strategy: Player = TitForTat,
        start_strategy_duration: int = 15,
    ):
        super().__init__(team=[start_strategy])
        self.p_memory_delete = p_memory_delete
        self.p_memory_alter = p_memory_alter
        self.loss_value = loss_value
        self.gain_value = gain_value
        self.memory = [] if not memory else memory
        self.start_strategy_duration = start_strategy_duration
        self.gloss_values = None

    def _post_init(self):
        super()._post_init()
        # This strategy is stochastic even if none of the team is.  The
        # MetaPlayer initializer will set stochastic to be False in that case.
        self.classifier["stochastic"] = True

    def __repr__(self):
        return Player.__repr__(self)

[docs]    def gain_loss_translate(self):
        """
        Translates the actions (D and C) to numeric values (loss_value and
        gain_value).
        """
        values = {C: self.gain_value, D: self.loss_value}
        self.gloss_values = [values[action] for action in self.memory]


[docs]    def memory_alter(self):
        """
        Alters memory entry, i.e. puts C if there's a D and vice versa.
        """
        alter = self._random.choice(range(0, len(self.memory)))
        self.memory[alter] = self.memory[alter].flip()


[docs]    def memory_delete(self):
        """
        Deletes memory entry.
        """
        self.memory.pop(self._random.choice(range(0, len(self.memory))))


[docs]    def meta_strategy(self, results, opponent):
        try:
            self.memory.append(opponent.history[-1])
        except IndexError:
            pass
        if len(self.history) < self.start_strategy_duration:
            return results[0]
        else:
            if self._random.random() <= self.p_memory_alter:
                self.memory_alter()
            if self._random.random() <= self.p_memory_delete:
                self.memory_delete()
            self.gain_loss_translate()
            if sum(self.gloss_values) < 0:
                return D
            else:
                return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.mindcontrol

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class MindController(Player):
    """A player that changes the opponents strategy to cooperate.

    Names

    - Mind Controller: Original name by Karol Langner
    """

    name = "Mind Controller"
    classifier = {
        "memory_depth": -10,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": True,  # Finds out what opponent will do
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        """
        Alters the opponents strategy method to be a lambda function which
        always returns C. This player will then always return D to take
        advantage of this
        """

        opponent.strategy = lambda opponent: C
        return D




[docs]class MindWarper(Player):
    """
    A player that changes the opponent's strategy but blocks changes to
    its own.

    Names

    - Mind Warper: Original name by Karol Langner
    """

    name = "Mind Warper"
    classifier = {
        "memory_depth": -10,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": True,  # changes what opponent will do
        "manipulates_state": False,
    }

    def __setattr__(self, name: str, val: str):
        if name == "strategy":
            pass
        else:
            self.__dict__[name] = val

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        opponent.strategy = lambda opponent: C
        return D




[docs]class MindBender(MindWarper):
    """
    A player that changes the opponent's strategy by modifying the internal
    dictionary.

    Names

    - Mind Bender: Original name by Karol Langner
    """

    name = "Mind Bender"
    classifier = {
        "memory_depth": -10,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": True,  # changes what opponent will do
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        opponent.__dict__["strategy"] = lambda opponent: C
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.mindreader

"""
The player classes in this module do not obey standard rules of the IPD (as
indicated by their classifier). We do not recommend putting a lot of time in to
optimising them.
"""
from axelrod._strategy_utils import inspect_strategy, look_ahead
from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class MindReader(Player):
    """A player that looks ahead at what the opponent will do and decides what
    to do.

    Names:

    - Mind reader: Original name by Jason Young
    """

    name = "Mind Reader"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": True,  # Finds out what opponent will do
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def foil_strategy_inspection() -> Action:
        """Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead"""
        return D


[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Pretends to play the opponent a number of times before each match.
        The primary purpose is to look far enough ahead to see if a defect will
        be punished by the opponent.
        """
        game = self.match_attributes["game"]

        best_strategy = look_ahead(self, opponent, game)

        return best_strategy




[docs]class ProtectedMindReader(MindReader):
    """A player that looks ahead at what the opponent will do and decides what
    to do. It is also protected from mind control strategies

    Names:

    - Protected Mind reader: Original name by Jason Young
    """

    name = "Protected Mind Reader"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": True,  # Finds out what opponent will do
        "manipulates_source": True,  # Stops opponent's strategy
        "manipulates_state": False,
    }

    def __setattr__(self, name: str, val: str):
        """Stops any other strategy altering the methods of this class """

        if name == "strategy":
            pass
        else:
            self.__dict__[name] = val



[docs]class MirrorMindReader(ProtectedMindReader):
    """A player that will mirror whatever strategy it is playing against by
    cheating and calling the opponent's strategy function instead of its own.

    Names:

    - Protected Mind reader: Original name by Brice Fernandes
    """

    name = "Mirror Mind Reader"

    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": True,  # Reads and copies the source of the opponent
        "manipulates_source": True,  # Changes own source dynamically
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def foil_strategy_inspection() -> Action:
        """Foils _strategy_utils.inspect_strategy and _strategy_utils.look_ahead"""
        return C


[docs]    def strategy(self, opponent: Player) -> Action:
        """Will read the mind of the opponent and play the opponent's strategy. """
        return inspect_strategy(self, opponent)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.mutual

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Desperate(Player):
    """A player that only cooperates after mutual defection.

    Names:

    - Desperate: [Berg2015]_"""

    name = "Desperate"
    classifier = {
        "memory_depth": 1,
        "long_run_time": False,
        "stochastic": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return self._random.random_choice()
        if self.history[-1] == D and opponent.history[-1] == D:
            return C
        return D




[docs]class Hopeless(Player):
    """A player that only defects after mutual cooperation.

    Names:

    - Hopeless: [Berg2015]_"""

    name = "Hopeless"
    classifier = {
        "memory_depth": 1,
        "long_run_time": False,
        "stochastic": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return self._random.random_choice()
        if self.history[-1] == C and opponent.history[-1] == C:
            return D
        return C




[docs]class Willing(Player):
    """A player that only defects after mutual defection.

    Names:

    - Willing: [Berg2015]_"""

    name = "Willing"
    classifier = {
        "memory_depth": 1,
        "long_run_time": False,
        "stochastic": True,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if not opponent.history:
            return self._random.random_choice()
        if self.history[-1] == D and opponent.history[-1] == D:
            return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.negation

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Negation(Player):
    """
    A player starts by cooperating or defecting randomly if it's their first move,
    then simply doing the opposite of the opponents last move thereafter.

    Names:

    - Negation: [PD2017]_
    """

    name = "Negation"
    classifier = {
        "memory_depth": 1,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        # Random first move
        if not self.history:
            return self._random.random_choice()
        # Act opposite of opponent otherwise
        return opponent.history[-1].flip()






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.oncebitten

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class OnceBitten(Player):
    """
    Cooperates once when the opponent defects, but if they defect twice in a row
    defaults to forgetful grudger for 10 turns defecting.

    Names:

    - Once Bitten: Original name by Holly Marissa
    """

    name = "Once Bitten"
    classifier = {
        "memory_depth": 12,  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.mem_length = 10
        self.grudged = False
        self.grudge_memory = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Begins by playing C, then plays D for mem_length rounds if the opponent
        ever plays D twice in a row.
        """
        if self.grudge_memory >= self.mem_length:
            self.grudge_memory = 0
            self.grudged = False

        if len(opponent.history) < 2:
            return C

        if self.grudged:
            self.grudge_memory += 1
            return D
        elif not (C in opponent.history[-2:]):
            self.grudged = True
            return D
        return C




[docs]class FoolMeOnce(Player):
    """
    Forgives one D then retaliates forever on a second D.

    Names:

    - Fool me once: Original name by Marc Harper
    """

    name = "Fool Me Once"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        if not opponent.history:
            return C
        if opponent.defections > 1:
            return D
        return C




[docs]class ForgetfulFoolMeOnce(Player):
    """
    Forgives one D then retaliates forever on a second D. Sometimes randomly
    forgets the defection count, and so keeps a secondary count separate from
    the standard count in Player.

    Names:

    - Forgetful Fool Me Once: Original name by Marc Harper
    """

    name = "Forgetful Fool Me Once"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, forget_probability: float = 0.05) -> None:
        """
        Parameters
        ----------
        forget_probability, float
            The probability of forgetting the count of opponent defections.
        """
        super().__init__()
        self.D_count = 0
        self._initial = C
        self.forget_probability = forget_probability

[docs]    def strategy(self, opponent: Player) -> Action:
        r = self._random.random()
        if not opponent.history:
            return self._initial
        if opponent.history[-1] == D:
            self.D_count += 1
        if r < self.forget_probability:
            self.D_count = 0
        if self.D_count > 1:
            return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.prober

from typing import List

from axelrod.action import Action
from axelrod.player import Player

Vector = List[float]


C, D = Action.C, Action.D


[docs]class CollectiveStrategy(Player):
    """Defined in [Li2009]_. 'It always cooperates in the first move and defects
    in the second move. If the opponent also cooperates in the first move and
    defects in the second move, CS will cooperate until the opponent defects.
    Otherwise, CS will always defect.'

    Names:

    - Collective Strategy: [Li2009]_

    """

    name = "CollectiveStrategy"

    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn == 0:
            return C
        if turn == 1:
            return D
        if opponent.defections > 1:
            return D
        if opponent.history[0:2] == [C, D]:
            return C
        return D




[docs]class Detective(Player):
    """
    Starts with C, D, C, C, or with the given sequence of actions.
    If the opponent defects at least once in the first fixed rounds,
    play as TFT forever, else defect forever.

    Names:

    - Detective: [NC2019]_
    """

    name = "Detective"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, initial_actions: List[Action] = None) -> None:
        super().__init__()
        if initial_actions is None:
            self.initial_actions = [C, D, C, C]
        else:
            self.initial_actions = initial_actions

[docs]    def strategy(self, opponent: Player) -> Action:
        hist_size = len(self.history)
        init_size = len(self.initial_actions)
        if hist_size < init_size:
            return self.initial_actions[hist_size]
        if D not in opponent.history[:init_size]:
            return D
        return opponent.history[-1] # TFT




[docs]class Prober(Player):
    """
    Plays D, C, C initially. Defects forever if opponent cooperated in moves 2
    and 3. Otherwise plays TFT.

    Names:

    - Prober: [Li2011]_
    """

    name = "Prober"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn == 0:
            return D
        if turn == 1:
            return C
        if turn == 2:
            return C
        if turn > 2:
            if opponent.history[1:3] == [C, C]:
                return D
            else:
                # TFT
                return D if opponent.history[-1:] == [D] else C




[docs]class Prober2(Player):
    """
    Plays D, C, C initially. Cooperates forever if opponent played D then C
    in moves 2 and 3. Otherwise plays TFT.

    Names:

    - Prober 2: [Prison1998]_
    """

    name = "Prober 2"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn == 0:
            return D
        if turn == 1:
            return C
        if turn == 2:
            return C
        if turn > 2:
            if opponent.history[1:3] == [D, C]:
                return C
            else:
                # TFT
                return D if opponent.history[-1:] == [D] else C




[docs]class Prober3(Player):
    """
    Plays D, C initially. Defects forever if opponent played C in moves 2.
    Otherwise plays TFT.

    Names:

    - Prober 3: [Prison1998]_
    """

    name = "Prober 3"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn == 0:
            return D
        if turn == 1:
            return C
        if turn > 1:
            if opponent.history[1] == C:
                return D
            else:
                # TFT
                return D if opponent.history[-1:] == [D] else C




[docs]class Prober4(Player):
    """
    Plays C, C, D, C, D, D, D, C, C, D, C, D, C, C, D, C, D, D, C, D initially.
    Counts retaliating and provocative defections of the opponent.
    If the absolute difference between the counts is smaller or equal to 2,
    defects forever.
    Otherwise plays C for the next 5 turns and TFT for the rest of the game.

    Names:

    - Prober 4: [Prison1998]_
    """

    name = "Prober 4"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.init_sequence = [
            C,
            C,
            D,
            C,
            D,
            D,
            D,
            C,
            C,
            D,
            C,
            D,
            C,
            C,
            D,
            C,
            D,
            D,
            C,
            D,
        ]
        self.just_Ds = 0
        self.unjust_Ds = 0
        self.turned_defector = False

[docs]    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return self.init_sequence[0]
        turn = len(self.history)
        if turn < len(self.init_sequence):
            if opponent.history[-1] == D:
                if self.history[-1] == D:
                    self.just_Ds += 1
                if self.history[-1] == C:
                    self.unjust_Ds += 1
            return self.init_sequence[turn]
        if turn == len(self.init_sequence):
            diff_in_Ds = abs(self.just_Ds - self.unjust_Ds)
            self.turned_defector = diff_in_Ds <= 2
        if self.turned_defector:
            return D
        if not self.turned_defector:
            if turn < len(self.init_sequence) + 5:
                return C
            return D if opponent.history[-1] == D else C




[docs]class HardProber(Player):
    """
    Plays D, D, C, C initially. Defects forever if opponent cooperated in moves
    2 and 3. Otherwise plays TFT.

    Names:

    - Hard Prober: [Prison1998]_
    """

    name = "Hard Prober"
    classifier = {
        "stochastic": False,
        "memory_depth": float("inf"),  # Long memory
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turn = len(self.history)
        if turn == 0:
            return D
        if turn == 1:
            return D
        if turn == 2:
            return C
        if turn == 3:
            return C
        if turn > 3:
            if opponent.history[1:3] == [C, C]:
                return D
            else:
                # TFT
                return D if opponent.history[-1:] == [D] else C




[docs]class NaiveProber(Player):
    """
    Like tit-for-tat, but it occasionally defects with a small probability.

    Names:

    - Naive Prober: [Li2011]_
    """

    name = "Naive Prober"
    classifier = {
        "memory_depth": 1,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, p: float = 0.1) -> None:
        """
        Parameters
        ----------
        p, float
            The probability to defect randomly
        """
        super().__init__()
        self.p = p
        if (self.p == 0) or (self.p == 1):
            self.classifier["stochastic"] = False

[docs]    def strategy(self, opponent: Player) -> Action:
        # First move
        if len(self.history) == 0:
            return C
        # React to the opponent's last move
        if opponent.history[-1] == D:
            return D
        # Otherwise cooperate, defect with probability 1 - self.p
        if self.p == 0:
            return C
        if self.p == 1:
            return D
        choice = self._random.random_choice(1 - self.p)
        return choice




[docs]class RemorsefulProber(NaiveProber):
    """
    Like Naive Prober, but it remembers if the opponent responds to a random
    defection with a defection by being remorseful and cooperating.

    For reference see: [Li2011]_. A more complete description is given in "The
    Selfish Gene" (https://books.google.co.uk/books?id=ekonDAAAQBAJ):

    "Remorseful Prober remembers whether it has just spontaneously defected, and
    whether the result was prompt retaliation. If so, it 'remorsefully' allows
    its opponent 'one free hit' without retaliating."

    Names:

    - Remorseful Prober: [Li2011]_
    """

    name = "Remorseful Prober"
    classifier = {
        "memory_depth": 2,  # It remembers if its previous move was random
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, p: float = 0.1) -> None:
        super().__init__(p)
        self.probing = False

[docs]    def strategy(self, opponent: Player) -> Action:
        # First move
        if len(self.history) == 0:
            return C
        # React to the opponent's last move
        if opponent.history[-1] == D:
            if self.probing:
                self.probing = False
                return C
            return D

        # Otherwise cooperate with probability 1 - self.p
        if self.p == 1:
            self.probing = True
            return D
        elif self.p == 0 or self._random.random() < 1 - self.p:
            self.probing = False
            return C

        self.probing = True
        return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.punisher

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Punisher(Player):
    """
    A player starts by cooperating however will defect if at any point the
    opponent has defected, but forgets after meme_length matches, with
    1<=mem_length<=20 proportional to the amount of time the opponent has
    played D, punishing that player for playing D too often.

    Names:

    - Punisher: Original name by Geraint Palmer
    """

    name = "Punisher"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        """
        Initialised the player
        """
        super().__init__()
        self.mem_length = 1
        self.grudged = False
        self.grudge_memory = 1

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Begins by playing C, then plays D for an amount of rounds proportional
        to the opponents historical '%' of playing D if the opponent ever
        plays D
        """

        if self.grudge_memory >= self.mem_length:
            self.grudge_memory = 0
            self.grudged = False

        if self.grudged:
            self.grudge_memory += 1
            return D

        elif D in opponent.history[-1:]:
            self.mem_length = (opponent.defections * 20) // len(opponent.history)
            self.grudged = True
            return D

        return C




[docs]class InversePunisher(Player):
    """
    An inverted version of Punisher. The player starts by cooperating however
    will defect if at any point the opponent has defected, and forgets after
    mem_length matches, with 1 <= mem_length <= 20. This time mem_length is
    proportional to the amount of time the opponent has played C.

    Names:

    - Inverse Punisher: Original name by Geraint Palmer
    """

    name = "Inverse Punisher"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.mem_length = 1
        self.grudged = False
        self.grudge_memory = 1

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        Begins by playing C, then plays D for an amount of rounds proportional
        to the opponents historical '%' of playing C if the opponent ever plays
        D.
        """

        if self.grudge_memory >= self.mem_length:
            self.grudge_memory = 0
            self.grudged = False

        if self.grudged:
            self.grudge_memory += 1
            return D
        elif D in opponent.history[-1:]:
            self.mem_length = (opponent.cooperations * 20) // len(opponent.history)
            if self.mem_length == 0:
                self.mem_length += 1
            self.grudged = True
            return D
        return C




[docs]class LevelPunisher(Player):
    """
    A player starts by cooperating however, after 10 rounds
    will defect if at any point the number of defections
    by an opponent is greater than 20%.

    Names:

    - Level Punisher: [Eckhart2015]_
    """

    name = "Level Punisher"
    classifier = {
        "memory_depth": float("inf"),  # Long Memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) < 10:
            return C
        elif opponent.defections / len(opponent.history) > 0.2:
            return D
        else:
            return C




[docs]class TrickyLevelPunisher(Player):
    """
    A player starts by cooperating however, after 10, 50 and 100 rounds
    will defect if at any point the percentage of defections
    by an opponent is greater than 20%, 10% and 5% respectively.

    Names:

    - Tricky Level Punisher: [Eckhart2015]_
    """

    name = "Tricky Level Punisher"
    classifier = {
        "memory_depth": float("inf"),  # Long Memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(opponent.history) == 0:
            return C
        if len(opponent.history) < 10:
            if opponent.defections / len(opponent.history) > 0.2:
                return D
        if len(opponent.history) < 50:
            if opponent.defections / len(opponent.history) > 0.1:
                return D
        if len(opponent.history) < 100:
            if opponent.defections / len(opponent.history) > 0.05:
                return D
        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.qlearner

from collections import OrderedDict
from typing import Dict, Union

from axelrod.action import Action, actions_to_str
from axelrod.player import Player

Score = Union[int, float]

C, D = Action.C, Action.D


[docs]class RiskyQLearner(Player):
    """A player who learns the best strategies through the q-learning
    algorithm.

    This Q learner is quick to come to conclusions and doesn't care about the
    future.

    Names:

    - Risky Q Learner: Original name by Geraint Palmer
    """

    name = "Risky QLearner"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }
    learning_rate = 0.9
    discount_rate = 0.9
    action_selection_parameter = 0.1
    memory_length = 12

    def __init__(self) -> None:
        """Initialises the player by picking a random strategy."""

        super().__init__()

        # Set this explicitly, since the constructor of super will not pick it up
        # for any subclasses that do not override methods using random calls.
        self.classifier["stochastic"] = True

        self.prev_action = None  # type: Action
        self.original_prev_action = None  # type: Action
        self.score = 0
        self.Qs = OrderedDict({"": OrderedDict(zip([C, D], [0, 0]))})
        self.Vs = OrderedDict({"": 0})
        self.prev_state = ""

    def receive_match_attributes(self):
        (R, P, S, T) = self.match_attributes["game"].RPST()
        self.payoff_matrix = {C: {C: R, D: S}, D: {C: T, D: P}}

[docs]    def strategy(self, opponent: Player) -> Action:
        """Runs a qlearn algorithm while the tournament is running."""
        if len(self.history) == 0:
            self.prev_action = self._random.random_choice()
            self.original_prev_action = self.prev_action
        state = self.find_state(opponent)
        reward = self.find_reward(opponent)
        if state not in self.Qs:
            self.Qs[state] = OrderedDict(zip([C, D], [0, 0]))
            self.Vs[state] = 0
        self.perform_q_learning(self.prev_state, state, self.prev_action, reward)
        action = self.select_action(state)
        self.prev_state = state
        self.prev_action = action
        return action


[docs]    def select_action(self, state: str) -> Action:
        """
        Selects the action based on the epsilon-soft policy
        """
        rnd_num = self._random.random()
        p = 1.0 - self.action_selection_parameter
        if rnd_num < p:
            return max(self.Qs[state], key=lambda x: self.Qs[state][x])
        return self._random.random_choice()


[docs]    def find_state(self, opponent: Player) -> str:
        """
        Finds the my_state (the opponents last n moves +
        its previous proportion of playing C) as a hashable state
        """
        prob = "{:.1f}".format(opponent.cooperations)
        action_str = actions_to_str(opponent.history[-self.memory_length :])
        return action_str + prob


[docs]    def perform_q_learning(self, prev_state: str, state: str, action: Action, reward):
        """
        Performs the qlearning algorithm
        """
        self.Qs[prev_state][action] = (1.0 - self.learning_rate) * self.Qs[prev_state][
            action
        ] + self.learning_rate * (reward + self.discount_rate * self.Vs[state])
        self.Vs[prev_state] = max(self.Qs[prev_state].values())


[docs]    def find_reward(self, opponent: Player) -> Dict[Action, Dict[Action, Score]]:
        """
        Finds the reward gained on the last iteration
        """

        if len(opponent.history) == 0:
            opp_prev_action = self._random.random_choice()
        else:
            opp_prev_action = opponent.history[-1]
        return self.payoff_matrix[self.prev_action][opp_prev_action]




[docs]class ArrogantQLearner(RiskyQLearner):
    """A player who learns the best strategies through the q-learning
    algorithm.

    This Q learner jumps to quick conclusions and cares about the future.

    Names:

    - Arrogant Q Learner: Original name by Geraint Palmer
    """

    name = "Arrogant QLearner"
    learning_rate = 0.9
    discount_rate = 0.1



[docs]class HesitantQLearner(RiskyQLearner):
    """A player who learns the best strategies through the q-learning algorithm.

    This Q learner is slower to come to conclusions and does not look ahead much.

    Names:

    - Hesitant Q Learner: Original name by Geraint Palmer
    """

    name = "Hesitant QLearner"
    learning_rate = 0.1
    discount_rate = 0.9



[docs]class CautiousQLearner(RiskyQLearner):
    """A player who learns the best strategies through the q-learning algorithm.

    This Q learner is slower to come to conclusions and wants to look ahead
    more.

    Names:

    - Cautious Q Learner: Original name by Geraint Palmer
    """

    name = "Cautious QLearner"
    learning_rate = 0.1
    discount_rate = 0.1





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.rand

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Random(Player):
    """A player who randomly chooses between cooperating and defecting.

    This strategy came 15th in Axelrod's original tournament.

    Names:

    - Random: [Axelrod1980]_
    - Lunatic: [Tzafestas2000]_
    """

    name = "Random"
    classifier = {
        "memory_depth": 0,  # Memory-one Four-Vector = (p, p, p, p)
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, p: float = 0.5) -> None:
        """
        Parameters
        ----------
        p, float
            The probability to cooperate

        Special Cases
        -------------
        Random(0) is equivalent to Defector
        Random(1) is equivalent to Cooperator
        """
        super().__init__()
        self.p = p

[docs]    def strategy(self, opponent: Player) -> Action:
        return self._random.random_choice(self.p)


    def _post_init(self):
        super()._post_init()
        if self.p in [0, 1]:
            self.classifier["stochastic"] = False
        # Avoid calls to _random, if strategy is deterministic
        # by overwriting the strategy function.
        if self.p <= 0:
            self.strategy = self.defect
        if self.p >= 1:
            self.strategy = self.cooperate

    @classmethod
    def cooperate(cls, opponent: Player) -> Action:
        return C

    @classmethod
    def defect(cls, opponent: Player) -> Action:
        return D





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.resurrection

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Resurrection(Player):
    """
    A player starts by cooperating and defects if the number of rounds
    played by the player is greater than five and the last five rounds
    are defections.

    Otherwise, the strategy plays like Tit-for-tat.

    Names:

    - Resurrection: [Eckhart2015]_
    """

    # These are various properties for the strategy
    name = "Resurrection"
    classifier = {
        "memory_depth": 5,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return C
        if len(self.history) >= 5 and self.history[-5:] == [D, D, D, D, D]:
            return D
        else:
            return opponent.history[-1]




[docs]class DoubleResurrection(Player):
    """
    A player starts by cooperating and defects if the number of rounds
    played by the player is greater than five and the last five rounds
    are cooperations.

    If the last five rounds were defections, the player cooperates.

    Names:

    - DoubleResurrection: [Eckhart2015]_
    """

    name = "DoubleResurrection"
    classifier = {
        "memory_depth": 5,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) == 0:
            return C
        if len(self.history) >= 5 and self.history[-5:] == [C, C, C, C, C]:
            return D
        elif len(self.history) >= 5 and self.history[-5:] == [D, D, D, D, D]:
            return C
        else:
            return opponent.history[-1]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.retaliate

from collections import defaultdict

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class Retaliate(Player):
    """
    A player starts by cooperating but will retaliate once the opponent
    has won more than 10 percent times the number of defections the player has.

    Names:

    - Retaliate: Original name by Owen Campbell
    """

    name = "Retaliate"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "inspects_source": False,
        "long_run_time": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, retaliation_threshold: float = 0.1) -> None:
        """
        Uses the basic init from the Player class, but also set the name to
        include the retaliation setting.
        """
        super().__init__()
        self.retaliation_threshold = retaliation_threshold
        self.play_counts = defaultdict(int)  # type: defaultdict

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        If the opponent has played D to my C more often than x% of the time
        that I've done the same to him, play D. Otherwise, play C.
        """

        if len(self.history):
            last_round = (self.history[-1], opponent.history[-1])
            self.play_counts[last_round] += 1
        CD_count = self.play_counts[(C, D)]
        DC_count = self.play_counts[(D, C)]
        if CD_count > DC_count * self.retaliation_threshold:
            return D
        return C




[docs]class Retaliate2(Retaliate):
    """
    Retaliate player with a threshold of 8 percent.

    Names:

    - Retaliate 2: Original name by Owen Campbell
    """

    name = "Retaliate 2"

    def __init__(self, retaliation_threshold: float = 0.08) -> None:
        super().__init__(retaliation_threshold=retaliation_threshold)



[docs]class Retaliate3(Retaliate):
    """
    Retaliate player with a threshold of 5 percent.

    Names:

    - Retaliate 3: Original name by Owen Campbell
    """

    name = "Retaliate 3"

    def __init__(self, retaliation_threshold: float = 0.05) -> None:
        super().__init__(retaliation_threshold=retaliation_threshold)



[docs]class LimitedRetaliate(Player):
    """
    A player that co-operates unless the opponent defects and wins.
    It will then retaliate by defecting. It stops when either, it has beaten
    the opponent 10 times more often that it has lost or it reaches the
    retaliation limit (20 defections).

    Names:

    - Limited Retaliate: Original name by Owen Campbell
    """

    name = "Limited Retaliate"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self, retaliation_threshold: float = 0.1, retaliation_limit: int = 20
    ) -> None:
        """
        Parameters
        ----------
        retaliation_threshold, float
            The threshold of the difference in defections, previous rounds of
            (C, D) versus (D, C)
        retaliation_limit, int
            The maximum number of retaliations until the strategy returns to
            cooperation
        """
        super().__init__()
        self.retaliating = False
        self.retaliation_count = 0
        self.retaliation_threshold = retaliation_threshold
        self.retaliation_limit = retaliation_limit
        self.play_counts = defaultdict(int)  # type: defaultdict

[docs]    def strategy(self, opponent: Player) -> Action:
        """
        If the opponent has played D to my C more often than x% of the time
        that I've done the same to him, retaliate by playing D but stop doing
        so once I've hit the retaliation limit.
        """

        if len(self.history):
            last_round = (self.history[-1], opponent.history[-1])
            self.play_counts[last_round] += 1
        CD_count = self.play_counts[(C, D)]
        DC_count = self.play_counts[(D, C)]
        if CD_count > DC_count * self.retaliation_threshold:
            self.retaliating = True
        else:
            self.retaliating = False
            self.retaliation_count = 0

        if self.retaliating:
            if self.retaliation_count < self.retaliation_limit:
                self.retaliation_count += 1
                return D
            else:
                self.retaliation_count = 0
                self.retaliating = False

        return C




[docs]class LimitedRetaliate2(LimitedRetaliate):
    """
    LimitedRetaliate player with a threshold of 8 percent and a
    retaliation limit of 15.

    Names:

    - Limited Retaliate 2: Original name by Owen Campbell
    """

    name = "Limited Retaliate 2"

    def __init__(
        self, retaliation_threshold: float = 0.08, retaliation_limit: int = 15
    ) -> None:
        super().__init__(
            retaliation_threshold=retaliation_threshold,
            retaliation_limit=retaliation_limit,
        )



[docs]class LimitedRetaliate3(LimitedRetaliate):
    """
    LimitedRetaliate player with a threshold of 5 percent and a
    retaliation limit of 20.

    Names:

    - Limited Retaliate 3: Original name by Owen Campbell
    """

    name = "Limited Retaliate 3"

    def __init__(
        self, retaliation_threshold: float = 0.05, retaliation_limit: int = 20
    ) -> None:
        super().__init__(
            retaliation_threshold=retaliation_threshold,
            retaliation_limit=retaliation_limit,
        )





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.revised_downing

"""
Revised Downing implemented from the Fortran source code for the second of
Axelrod's tournaments.
"""
from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class RevisedDowning(Player):
    """
    Strategy submitted to Axelrod's second tournament by Leslie Downing.
    (K59R).

    Revised Downing attempts to determine if players are cooperative or not.
    If so, it cooperates with them.

    This strategy is a revision of the strategy submitted by Downing to
    Axelrod's first tournament.


    Names:
    - Revised Downing: [Axelrod1980]_
    """

    name = "Revised Downing"

    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.good = 1.0
        self.bad = 0.0
        self.nice1 = 0
        self.nice2 = 0
        self.total_C = 0  # note the same as self.cooperations
        self.total_D = 0  # note the same as self.defections

[docs]    def strategy(self, opponent: Player) -> Action:
        round_number = len(self.history) + 1

        if round_number == 1:
            return C

        # Update various counts
        if round_number > 2:
            if self.history[-2] == D:
                if opponent.history[-1] == C:
                    self.nice2 += 1
                self.total_D += 1
                self.bad = self.nice2 / self.total_D
            else:
                if opponent.history[-1] == C:
                    self.nice1 += 1
                self.total_C += 1
                self.good = self.nice1 / self.total_C
        # Make a decision based on the accrued counts
        c = 6.0 * self.good - 8.0 * self.bad - 2
        alt = 4.0 * self.good - 5.0 * self.bad - 1
        if c >= 0 and c >= alt:
            move = C
        elif (c >= 0 and c < alt) or (alt >= 0):
            move = self.history[-1].flip()
        else:
            move = D
        return move






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.selfsteem

from math import pi, sin

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class SelfSteem(Player):
    """
    This strategy is based on the feeling with the same name.
    It is modeled on the sine curve(f = sin( 2* pi * n / 10 )), which varies
    with the current iteration.

    If f > 0.95, 'ego' of the algorithm is inflated; always defects.
    If 0.95 > abs(f) > 0.3, rational behavior; follows TitForTat algortithm.
    If 0.3 > f > -0.3; random behavior.
    If f < -0.95, algorithm is at rock bottom; always cooperates.

    Futhermore, the algorithm implements a retaliation policy, if the opponent
    defects; the sin curve is shifted. But due to lack of further information,
    this implementation does not include a sin phase change.
    Names:

    - SelfSteem: [Andre2013]_
    """

    name = "SelfSteem"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        turns_number = len(self.history)
        sine_value = sin(2 * pi * turns_number / 10)

        if sine_value > 0.95:
            return D

        if abs(sine_value) < 0.95 and abs(sine_value) > 0.3:
            return opponent.history[-1]

        if sine_value < 0.3 and sine_value > -0.3:
            return self._random.random_choice()

        return C






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.sequence_player

from types import FunctionType
from typing import Tuple

from axelrod._strategy_utils import thue_morse_generator
from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class SequencePlayer(Player):
    """Abstract base class for players that use a generated sequence to
    determine their plays.

    Names:

    - Sequence Player: Original name by Marc Harper
    """

    def __init__(
        self, generator_function: FunctionType, generator_args: Tuple = ()
    ) -> None:
        super().__init__()
        self.sequence_generator = generator_function(*generator_args)

[docs]    @staticmethod
    def meta_strategy(value: int) -> Action:
        """Determines how to map the sequence value to cooperate or defect.
        By default, treat values like python truth values. Override in child
        classes for alternate behaviors."""
        if value == 0:
            return D
        else:
            return C


[docs]    def strategy(self, opponent: Player) -> Action:
        # Iterate through the sequence and apply the meta strategy
        for s in self.sequence_generator:
            return self.meta_strategy(s)


    def __getstate__(self):
        """Generator attributes are not pickleable so we remove and rebuild."""
        return_dict = self.__dict__.copy()
        del return_dict["sequence_generator"]
        return return_dict

    def __setstate__(self, state):
        self.reset()
        self._history = state["_history"]
        self.match_attributes = state["match_attributes"]
        for _ in self.history:
            next(self.sequence_generator)



[docs]class ThueMorse(SequencePlayer):
    """
    A player who cooperates or defects according to the Thue-Morse sequence.
    The first few terms of the Thue-Morse sequence are:
    0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

    Thue-Morse sequence: http://mathworld.wolfram.com/Thue-MorseSequence.html

    Names:

    - Thue Morse: Original name by Geraint Palmer
    """

    name = "ThueMorse"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__(thue_morse_generator, (0,))



[docs]class ThueMorseInverse(ThueMorse):
    """ A player who plays the inverse of the Thue-Morse sequence.

    Names:

    - Inverse Thue Morse: Original name by Geraint Palmer
    """

    name = "ThueMorseInverse"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super(ThueMorse, self).__init__(thue_morse_generator, (0,))

[docs]    @staticmethod
    def meta_strategy(value: int) -> Action:
        # Switch the default cooperate and defect action on 0 or 1
        if value == 0:
            return C
        else:
            return D






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.shortmem

from axelrod import Player
from axelrod.action import Action

C, D = Action.C, Action.D


[docs]class ShortMem(Player):
    """
    A player starts by always cooperating for the first 10 moves.

    From the tenth round on, the player analyzes the last ten actions, and
    compare the number of defects and cooperates of the opponent, based in
    percentage. If cooperation occurs 30% more than defection, it will
    cooperate.
    If defection occurs 30% more than cooperation, the program will defect.
    Otherwise, the program follows the TitForTat algorithm.

    Names:

    - ShortMem: [Andre2013]_
    """

    name = "ShortMem"
    classifier = {
        "memory_depth": float('inf'),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        if len(opponent.history) <= 10:
            return C

        array = opponent.history[-10:]
        C_counts = array.count(C)
        D_counts = array.count(D)

        if C_counts - D_counts >= 3:
            return C
        elif D_counts - C_counts >= 3:
            return D
        else:
            return opponent.history[-1]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.stalker

from axelrod.action import Action
from axelrod.player import Player
from axelrod.strategy_transformers import FinalTransformer

C, D = Action.C, Action.D


[docs]@FinalTransformer((D,), name_prefix=None)  # End with defection
class Stalker(Player):
    """

    This is a strategy which is only influenced by the score.
    Its behavior is based on three values:
    the very_bad_score (all rounds in defection)
    very_good_score (all rounds in cooperation)
    wish_score (average between bad and very_good score)

    It starts with cooperation.

    - If current_average_score > very_good_score, it defects
    - If current_average_score lies in (wish_score, very_good_score) it
      cooperates
    - If current_average_score > 2, it cooperates
    - If current_average_score lies in (1, 2)
    - The remaining case, current_average_score < 1, it behaves randomly.
    - It defects in the last round

    Names:

    - Stalker: [Andre2013]_
    """

    name = "Stalker"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def receive_match_attributes(self):
        R, P, S, T = self.match_attributes["game"].RPST()
        self.very_good_score = R
        self.very_bad_score = P
        self.wish_score = (R + P) / 2
        self.current_score = 0

    def score_last_round(self, opponent: Player):
        # Load the default game if not supplied by a tournament.
        game = self.match_attributes["game"]
        last_round = (self.history[-1], opponent.history[-1])
        scores = game.score(last_round)
        self.current_score += scores[0]

    def strategy(self, opponent: Player) -> Action:

        if len(self.history) == 0:
            return C

        self.score_last_round(opponent)

        current_average_score = self.current_score / len(self.history)

        if current_average_score > self.very_good_score:
            return D
        if (current_average_score > self.wish_score) and (
            current_average_score < self.very_good_score
        ):
            return C
        if current_average_score > 2:
            return C
        if (current_average_score < 2) and (current_average_score > 1):
            return D
        return self._random.random_choice()





          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.titfortat

from axelrod.action import Action, actions_to_str
from axelrod.player import Player
from axelrod.strategy_transformers import FinalTransformer, TrackHistoryTransformer

C, D = Action.C, Action.D


[docs]class TitForTat(Player):
    """
    A player starts by cooperating and then mimics the previous action of the
    opponent.

    This strategy was referred to as the *'simplest'* strategy submitted to
    Axelrod's first tournament. It came first.

    Note that the code for this strategy is written in a fairly verbose
    way. This is done so that it can serve as an example strategy for
    those who might be new to Python.

    Names:

    - Rapoport's strategy: [Axelrod1980]_
    - TitForTat: [Axelrod1980]_
    """

    # These are various properties for the strategy
    name = "Tit For Tat"
    classifier = {
        "memory_depth": 1,  # Four-Vector = (1.,0.,1.,0.)
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        """This is the actual strategy"""
        # First move
        if not self.history:
            return C
        # React to the opponent's last move
        if opponent.history[-1] == D:
            return D
        return C




[docs]class TitFor2Tats(Player):
    """A player starts by cooperating and then defects only after two defects by
    opponent.

    Submitted to Axelrod's second tournament by John Maynard Smith; it came in
    24th in that tournament.

    Names:

    - Tit for two Tats: [Axelrod1984]_
    - Slow tit for two tats: Original name by Ranjini Das
    - JMaynardSmith: [Axelrod1980b]_
    """

    name = "Tit For 2 Tats"
    classifier = {
        "memory_depth": 2,  # Long memory, memory-2
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return D if opponent.history[-2:] == [D, D] else C




[docs]class TwoTitsForTat(Player):
    """A player starts by cooperating and replies to each defect by two
    defections.

    Names:

    - Two Tits for Tats: [Axelrod1984]_
    """

    name = "Two Tits For Tat"
    classifier = {
        "memory_depth": 2,  # Long memory, memory-2
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return D if D in opponent.history[-2:] else C




[docs]class DynamicTwoTitsForTat(Player):
    """
    A player starts by cooperating and then punishes its opponent's
    defections with defections, but with a dynamic bias towards cooperating
    based on the opponent's ratio of cooperations to total moves
    (so their current probability of cooperating regardless of the
    opponent's move (aka: forgiveness)).

    Names:

     - Dynamic Two Tits For Tat: Original name by Grant Garrett-Grossman.
    """

    name = "Dynamic Two Tits For Tat"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent):
        # First move
        if not opponent.history:
            # Make sure we cooperate first turn
            return C
        if D in opponent.history[-2:]:
            # Probability of cooperating regardless
            return self._random.random_choice(opponent.cooperations / len(opponent.history))
        else:
            return C




[docs]class Bully(Player):
    """A player that behaves opposite to Tit For Tat, including first move.

    Starts by defecting and then does the opposite of opponent's previous move.
    This is the complete opposite of Tit For Tat, also called Bully in the
    literature.

    Names:

    - Reverse Tit For Tat: [Nachbar1992]_

    """

    name = "Bully"
    classifier = {
        "memory_depth": 1,  # Four-Vector = (0, 1, 0, 1)
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return C if opponent.history[-1:] == [D] else D




[docs]class SneakyTitForTat(Player):
    """Tries defecting once and repents if punished.

    Names:

    - Sneaky Tit For Tat: Original name by Karol Langner
    """

    name = "Sneaky Tit For Tat"
    classifier = {
        "memory_depth": float("inf"),  # Long memory
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        if len(self.history) < 2:
            return C
        if D not in opponent.history:
            return D
        if opponent.history[-1] == D and self.history[-2] == D:
            return C
        return opponent.history[-1]




[docs]class SuspiciousTitForTat(Player):
    """A variant of Tit For Tat that starts off with a defection.

    Names:

    - Suspicious Tit For Tat: [Hilbe2013]_
    - Mistrust: [Beaufils1997]_
    """

    name = "Suspicious Tit For Tat"
    classifier = {
        "memory_depth": 1,  # Four-Vector = (1.,0.,1.,0.)
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return C if opponent.history[-1:] == [C] else D




[docs]class AntiTitForTat(Player):
    """A strategy that plays the opposite of the opponents previous move.
    This is similar to Bully, except that the first move is cooperation.

    Names:

    - Anti Tit For Tat: [Hilbe2013]_
    - Psycho (PSYC): [Ashlock2009]_
    """

    name = "Anti Tit For Tat"
    classifier = {
        "memory_depth": 1,  # Four-Vector = (1.,0.,1.,0.)
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        return D if opponent.history[-1:] == [C] else C




[docs]class HardTitForTat(Player):
    """A variant of Tit For Tat that uses a longer history for retaliation.

    Names:

    - Hard Tit For Tat: [PD2017]_
    """

    name = "Hard Tit For Tat"
    classifier = {
        "memory_depth": 3,  # memory-three
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        # Cooperate on the first move
        if not opponent.history:
            return C
        # Defects if D in the opponent's last three moves
        if D in opponent.history[-3:]:
            return D
        # Otherwise cooperates
        return C




[docs]class HardTitFor2Tats(Player):
    """A variant of Tit For Two Tats that uses a longer history for
    retaliation.

    Names:

    - Hard Tit For Two Tats: [Stewart2012]_
    """

    name = "Hard Tit For 2 Tats"
    classifier = {
        "memory_depth": 3,  # memory-three
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        # Cooperate on the first move
        if not opponent.history:
            return C
        # Defects if two consecutive D in the opponent's last three moves
        history_string = actions_to_str(opponent.history[-3:])
        if "DD" in history_string:
            return D
        # Otherwise cooperates
        return C




[docs]class OmegaTFT(Player):
    """OmegaTFT modifies Tit For Tat in two ways:
       - checks for deadlock loops of alternating rounds of (C, D) and (D, C),
       and attempting to break them
       - uses a more sophisticated retaliation mechanism that is noise tolerant

       Names:

       - OmegaTFT: [Slany2007]_
    """

    name = "Omega TFT"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(
        self, deadlock_threshold: int = 3, randomness_threshold: int = 8
    ) -> None:
        super().__init__()
        self.deadlock_threshold = deadlock_threshold
        self.randomness_threshold = randomness_threshold
        self.randomness_counter = 0
        self.deadlock_counter = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        # Cooperate on the first move
        if not self.history:
            return C
        # TFT on round 2
        if len(self.history) == 1:
            return opponent.history[-1]

        # Are we deadlocked? (in a CD -> DC loop)
        if self.deadlock_counter >= self.deadlock_threshold:
            move = C
            if self.deadlock_counter == self.deadlock_threshold:
                self.deadlock_counter = self.deadlock_threshold + 1
            else:
                self.deadlock_counter = 0
        else:
            # Update counters
            if opponent.history[-2:] == [C, C]:
                self.randomness_counter -= 1
            # If the opponent's move changed, increase the counter
            if opponent.history[-2] != opponent.history[-1]:
                self.randomness_counter += 1
            # If the opponent's last move differed from mine,
            # increase the counter
            if self.history[-1] != opponent.history[-1]:
                self.randomness_counter += 1
            # Compare counts to thresholds
            # If randomness_counter exceeds Y, Defect for the remainder
            if self.randomness_counter >= self.randomness_threshold:
                move = D
            else:
                # TFT
                move = opponent.history[-1]
                # Check for deadlock
                if opponent.history[-2] != opponent.history[-1]:
                    self.deadlock_counter += 1
                else:
                    self.deadlock_counter = 0
        return move




[docs]class OriginalGradual(Player):
    """
    A player that punishes defections with a growing number of defections
    but after punishing for `punishment_limit` number of times enters a calming
    state and cooperates no matter what the opponent does for two rounds.

    The `punishment_limit` is incremented whenever the opponent defects and the
    strategy is not in either calming or punishing state.

    Note that `Gradual` appears in [CRISTAL-SMAC2018]_ however that version of
    `Gradual` does not give the results reported in [Beaufils1997]_ which is the
    paper that first introduced the strategy. For a longer discussion of this
    see: https://github.com/Axelrod-Python/Axelrod/issues/1294. This is why this
    strategy has been renamed to `OriginalGradual`.

    Names:

    - Gradual: [Beaufils1997]_
     """

    name = "Original Gradual"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:

        super().__init__()
        self.calming = False
        self.punishing = False
        self.punishment_count = 0
        self.punishment_limit = 0

[docs]    def strategy(self, opponent: Player) -> Action:

        if self.calming:
            self.calming = False
            return C

        if self.punishing:
            if self.punishment_count < self.punishment_limit:
                self.punishment_count += 1
                return D
            else:
                self.calming = True
                self.punishing = False
                self.punishment_count = 0
                return C

        if D in opponent.history[-1:]:
            self.punishing = True
            self.punishment_count += 1
            self.punishment_limit += 1
            return D

        return C




[docs]class Gradual(Player):
    """
    Similar to OriginalGradual, this is a player that punishes defections with a
    growing number of defections but after punishing for `punishment_limit`
    number of times enters a calming state and cooperates no matter what the
    opponent does for two rounds.

    This version of Gradual is an update of `OriginalGradual` and the difference
    is that the `punishment_limit` is incremented whenever the opponent defects
    (regardless of the state of the player).

    Note that this version of `Gradual` appears in [CRISTAL-SMAC2018]_ however
    this version of
    `Gradual` does not give the results reported in [Beaufils1997]_ which is the
    paper that first introduced the strategy. For a longer discussion of this
    see: https://github.com/Axelrod-Python/Axelrod/issues/1294.

    This version is based on  https://github.com/cristal-smac/ipd/blob/master/src/strategies.py#L224

    Names:

    - Gradual: [CRISTAL-SMAC2018]_
    """

    name = "Gradual"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:

        super().__init__()
        self.calm_count = 0
        self.punish_count = 0

[docs]    def strategy(self, opponent: Player) -> Action:

        if len(self.history) == 0:
            return C

        if self.punish_count > 0:
            self.punish_count -= 1
            return D

        if self.calm_count > 0:
            self.calm_count -= 1
            return C

        if opponent.history[-1] == D:
            self.punish_count = opponent.defections - 1
            self.calm_count = 2
            return D
        return C




[docs]@TrackHistoryTransformer(name_prefix=None)
class ContriteTitForTat(Player):
    """
    A player that corresponds to Tit For Tat if there is no noise. In the case
    of a noisy match: if the opponent defects as a result of a noisy defection
    then ContriteTitForTat will become 'contrite' until it successfully
    cooperates.

    Names:

    - Contrite Tit For Tat: [Axelrod1995]_
    """

    name = "Contrite Tit For Tat"
    classifier = {
        "memory_depth": 3,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.contrite = False
        self._recorded_history = []

    def strategy(self, opponent: Player) -> Action:

        if not opponent.history:
            return C

        # If contrite but managed to cooperate: apologise.
        if self.contrite and self.history[-1] == C:
            self.contrite = False
            return C

        # Check if noise provoked opponent
        if self._recorded_history[-1] != self.history[-1]:  # Check if noise
            if self.history[-1] == D and opponent.history[-1] == C:
                self.contrite = True

        return opponent.history[-1]



[docs]class AdaptiveTitForTat(Player):
    """ATFT - Adaptive Tit For Tat (Basic Model)

    Algorithm

    if (opponent played C in the last cycle) then
    world = world + r*(1-world)
    else
    world = world + r*(0-world)
    If (world >= 0.5) play C, else play D

    Attributes

    world : float [0.0, 1.0], set to 0.5
        continuous variable representing the world's image
        1.0 - total cooperation
        0.0 - total defection
        other values - something in between of the above
        updated every round, starting value shouldn't matter as long as
        it's >= 0.5

    Parameters

    rate : float [0.0, 1.0], default=0.5
        adaptation rate - r in Algorithm above
        smaller value means more gradual and robust
        to perturbations behaviour

    Names:

    - Adaptive Tit For Tat: [Tzafestas2000]_
    """

    name = "Adaptive Tit For Tat"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }
    world = 0.5

    def __init__(self, rate: float = 0.5) -> None:
        super().__init__()
        self.rate = rate
        self.world = rate

[docs]    def strategy(self, opponent: Player) -> Action:

        if len(opponent.history) == 0:
            return C

        if opponent.history[-1] == C:
            self.world += self.rate * (1.0 - self.world)
        else:
            self.world -= self.rate * self.world

        if self.world >= 0.5:
            return C

        return D




[docs]class SpitefulTitForTat(Player):
    """
    A player starts by cooperating and then mimics the previous action of the
    opponent until opponent defects twice in a row, at which point player
    always defects

    Names:

    - Spiteful Tit For Tat: [Prison1998]_
    """

    name = "Spiteful Tit For Tat"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self) -> None:
        super().__init__()
        self.retaliating = False

[docs]    def strategy(self, opponent: Player) -> Action:
        # First move
        if not self.history:
            return C

        if opponent.history[-2:] == [D, D]:
            self.retaliating = True

        if self.retaliating:
            return D
        else:
            # React to the opponent's last move
            if opponent.history[-1] == D:
                return D
            return C




[docs]class SlowTitForTwoTats2(Player):
    """
    A player plays C twice, then if the opponent plays the same move twice,
    plays that move, otherwise plays previous move.

    Names:

    - Slow Tit For Tat: [Prison1998]_
    """

    name = "Slow Tit For Two Tats 2"
    classifier = {
        "memory_depth": 2,
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:

        # Start with two cooperations
        if len(self.history) < 2:
            return C

        # Mimic if opponent plays the same move twice
        if opponent.history[-2] == opponent.history[-1]:
            return opponent.history[-1]

        # Otherwise play previous move
        return self.history[-1]




[docs]@FinalTransformer((D,), name_prefix=None)
class Alexei(Player):
    """
    Plays similar to Tit-for-Tat, but always defect on last turn.

    Names:

    - Alexei: [LessWrong2011]_
    """

    name = "Alexei"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return C
        if opponent.history[-1] == D:
            return D
        return C



[docs]@FinalTransformer((D,), name_prefix=None)
class EugineNier(Player):
    """
    Plays similar to Tit-for-Tat, but with two conditions:
    1) Always Defect on Last Move
    2) If other player defects five times, switch to all defects.

    Names:

    - Eugine Nier: [LessWrong2011]_
    """

    name = "EugineNier"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.is_defector = False

    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return C
        if not (self.is_defector) and opponent.defections >= 5:
            self.is_defector = True
        if self.is_defector:
            return D
        return opponent.history[-1]



[docs]class NTitsForMTats(Player):
    """
    A parameterizable Tit-for-Tat,
    The arguments are:
    1) M: the number of defection before retaliation
    2) N: the number of retaliations

    Names:

    - N Tit(s) For M Tat(s): Original name by Marc Harper
    """

    name = "N Tit(s) For M Tat(s)"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, N: int = 3, M: int = 2) -> None:
        """
        Parameters
        ----------
        N: int
            Number of retaliations
        M: int
            Number of defection before retaliation

        Special Cases
        -------------
        NTitsForMTats(1,1) is equivalent to TitForTat
        NTitsForMTats(1,2) is equivalent to TitFor2Tats
        NTitsForMTats(2,1) is equivalent to TwoTitsForTat
        NTitsForMTats(0,*) is equivalent to Cooperator
        NTitsForMTats(*,0) is equivalent to Defector
        """
        super().__init__()
        self.N = N
        self.M = M
        self.classifier["memory_depth"] = max([M, N])
        self.retaliate_count = 0

[docs]    def strategy(self, opponent: Player) -> Action:
        # if opponent defected consecutively M times, start the retaliation
        if not self.M or opponent.history[-self.M :].count(D) == self.M:
            self.retaliate_count = self.N
        if self.retaliate_count:
            self.retaliate_count -= 1
            return D
        return C




[docs]@FinalTransformer((D,), name_prefix=None)
class Michaelos(Player):
    """
    Plays similar to Tit-for-Tat with two exceptions:
    1) Defect on last turn.
    2) After own defection and opponent's cooperation, 50 percent of the time,
    cooperate. The other 50 percent of the time, always defect for the rest of
    the game.

    Names:

    - Michaelos: [LessWrong2011]_
    """

    name = "Michaelos"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self):
        super().__init__()
        self.is_defector = False

    def strategy(self, opponent: Player) -> Action:
        if not self.history:
            return C
        if self.is_defector:
            return D
        if self.history[-1] == D and opponent.history[-1] == C:
            decision = self._random.random_choice()
            if decision == C:
                return C
            else:
                self.is_defector = True
                return D

        return opponent.history[-1]



[docs]class RandomTitForTat(Player):
    """
    A player starts by cooperating and then follows by copying its
    opponent (tit for tat style).  From then on the player
    will switch between copying its opponent and randomly
    responding every other iteration.

    Name:

    - Random TitForTat: Original name by Zachary M. Taylor
    """

    # These are various properties for the strategy
    name = "Random Tit for Tat"
    classifier = {
        "memory_depth": 1,
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, p: float = 0.5) -> None:
        """
        Parameters
        ----------
        p, float
            The probability to cooperate
        """
        super().__init__()
        self.p = p
        self.act_random = False
        if p in [0, 1]:
            self.classifier["stochastic"] = False

[docs]    def strategy(self, opponent: Player) -> Action:
        """This is the actual strategy"""
        if not self.history:
            return C

        if self.act_random:
            self.act_random = False
            try:
                return self._random.random_choice(self.p)
            except AttributeError:
                return D if self.p == 0 else C

        self.act_random = True
        return opponent.history[-1]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.verybad

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class VeryBad(Player):
    """
    It cooperates in the first three rounds, and uses probability
    (it implements a memory, which stores the opponent’s moves) to decide for
    cooperating or defecting.
    Due to a lack of information as to what that probability refers to in this
    context, probability(P(X)) refers to (Count(X)/Total_Moves) in this
    implementation
    P(C) = Cooperations / Total_Moves
    P(D) = Defections / Total_Moves = 1 - P(C)

    Names:

    - VeryBad: [Andre2013]_
    """

    name = "VeryBad"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": False,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    @staticmethod
    def strategy(opponent: Player) -> Action:
        total_moves = len(opponent.history)

        if total_moves < 3:
            return C

        cooperations = opponent.cooperations

        cooperation_probability = cooperations / total_moves

        if cooperation_probability > 0.5:
            return C

        elif cooperation_probability < 0.5:
            return D

        else:
            return opponent.history[-1]






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.worse_and_worse

from axelrod.action import Action
from axelrod.player import Player

C, D = Action.C, Action.D


[docs]class WorseAndWorse(Player):
    """
    Defects with probability of 'current turn / 1000'. Therefore
    it is more and more likely to defect as the round goes on.

    Source code available at the download tab of [Prison1998]_


    Names:
        - Worse and Worse: [Prison1998]_
    """

    name = "Worse and Worse"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1
        probability = 1 - current_round / 1000
        return self._random.random_choice(probability)




[docs]class KnowledgeableWorseAndWorse(Player):
    """
    This strategy is based on 'Worse And Worse' but will defect with probability
    of 'current turn / total no. of turns'.

    Names:
        - Knowledgeable Worse and Worse: Original name by Adam Pohl
    """

    name = "Knowledgeable Worse and Worse"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1
        expected_length = self.match_attributes["length"]
        probability = 1 - current_round / expected_length
        return self._random.random_choice(probability)




[docs]class WorseAndWorse2(Player):
    """
    Plays as tit for tat during the first 20 moves.
    Then defects with probability (current turn - 20) / current turn.
    Therefore it is more and more likely to defect as the round goes on.

    Names:
        - Worse and Worse 2: [Prison1998]_
    """

    name = "Worse and Worse 2"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1

        if current_round == 1:
            return C
        elif current_round <= 20:
            return opponent.history[-1]
        else:
            probability = 20 / current_round
            return self._random.random_choice(probability)




[docs]class WorseAndWorse3(Player):
    """
    Cooperates in the first turn.
    Then defects with probability no. of opponent defects / (current turn - 1).
    Therefore it is more likely to defect when the opponent defects for a larger
    proportion of the turns.

    Names:
        - Worse and Worse 3: [Prison1998]_
    """

    name = "Worse and Worse 3"
    classifier = {
        "memory_depth": float("inf"),
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

[docs]    def strategy(self, opponent: Player) -> Action:
        current_round = len(self.history) + 1

        if current_round == 1:
            return C
        else:
            probability = 1 - opponent.defections / (current_round - 1)
            return self._random.random_choice(probability)






          

      

      

    

  

    
      
          
            
  Source code for axelrod.strategies.zero_determinant

from axelrod.action import Action

from .memoryone import MemoryOnePlayer

C, D = Action.C, Action.D


[docs]class LRPlayer(MemoryOnePlayer):
    """
    Abstraction for Linear Relation players. These players enforce a linear
    difference in stationary payoffs :math:`s (S_{xy} - l) = S_{yx} - l.`

    The parameter :math:`s` is called the slope and the parameter :math:`l` the
    baseline payoff. For extortionate strategies, the extortion factor
    :math:`\chi` is the inverse of the slope :math:`s`.

    For the standard prisoner's dilemma where :math:`T > R > P > S` and
    :math:`R > (T + S) / 2 > P`, a pair :math:`(l, s)` is enforceable iff

    .. math::
       :nowrap:

       \\begin{eqnarray}
       &P &<= l <= R \\\\
       &s_{min} &= -\min\\left( \\frac{T - l}{l - S}, \\frac{l - S}{T - l}\\right) <= s <= 1
       \\end{eqnarray}

    And also that there exists :math:`\\phi` such that

    .. math::
       :nowrap:

       \\begin{eqnarray}
          p_1 &= P(C|CC) &= 1 - \\phi (1 - s)(R - l) \\\\
          p_2 &= P(C|CD) &= 1 - \\phi (s(l - S) + (T - l)) \\\\
          p_3 &= P(C|DC) &= \\phi ((l - S) + s(T - l)) \\\\
          p_4 &= P(C|DD) &= \\phi (1 - s)(l - P)
       \\end{eqnarray}


    These conditions also force :math:`\\phi >= 0`. For a given pair :math:`(l, s)`
    there may be multiple such :math:`\\phi`.

    This parameterization is Equation 14 in [Hilbe2013]_.
    See Figure 2 of the article for a more in-depth explanation. Other game
    parameters can alter the relations and bounds above.

    Names:

    - Linear Relation player: [Hilbe2013]_
    """

    name = "LinearRelation"
    classifier = {
        "memory_depth": 1,  # Memory-one Four-Vector
        "stochastic": True,
        "long_run_time": False,
        "inspects_source": False,
        "manipulates_source": False,
        "manipulates_state": False,
    }

    def __init__(self, phi: float = 0.2, s: float = 0.1, l: float = 1) -> None:
        """
        Parameters

        phi, s, l: floats
            Parameters determining the four_vector of the LR player.
        """
        self.phi = phi
        self.s = s
        self.l = l
        super().__init__()

    def set_initial_four_vector(self, four_vector):
        pass

[docs]    def receive_match_attributes(self):
        """
        Parameters

        phi, s, l: floats
            Parameter used to compute the four-vector according to the
            parameterization of the strategies below.
        """

        R, P, S, T = self.match_attributes["game"].RPST()
        l = self.l
        phi = self.phi
        s = self.s

        # Check parameters
        s_min = -min((T - l) / (l - S), (l - S) / (T - l))
        if (l < P) or (l > R) or (s > 1) or (s < s_min):
            raise ValueError

        p1 = 1 - phi * (1 - s) * (R - l)
        p2 = 1 - phi * (s * (l - S) + (T - l))
        p3 = phi * ((l - S) + s * (T - l))
        p4 = phi * (1 - s) * (l - P)

        four_vector = [p1, p2, p3, p4]
        self.set_four_vector(four_vector)




[docs]class ZDExtortion(LRPlayer):
    """
    An example ZD Extortion player.

    Names:

    - ZDExtortion: [Roemheld2013]_
    """

    name = "ZD-Extortion"

    def __init__(self, phi: float = 0.2, s: float = 0.1, l: float = 1) -> None:
        super().__init__(phi, s, l)



[docs]class ZDExtort2(LRPlayer):
    """
    An Extortionate Zero Determinant Strategy with l=P.

    Names:

    - Extort-2: [Stewart2012]_
    """

    name = "ZD-Extort-2"

    def __init__(self, phi: float = 1 / 9, s: float = 0.5) -> None:
        # l = P will be set by receive_match_attributes
        super().__init__(phi, s, None)

[docs]    def receive_match_attributes(self):
        (R, P, S, T) = self.match_attributes["game"].RPST()
        self.l = P
        super().receive_match_attributes()




[docs]class ZDExtort2v2(LRPlayer):
    """
    An Extortionate Zero Determinant Strategy with l=1.


    Names:

    - EXTORT2: [Kuhn2017]_
    """

    name = "ZD-Extort-2 v2"

    def __init__(self, phi: float = 1 / 8, s: float = 0.5, l: float = 1) -> None:
        super().__init__(phi, s, l)



[docs]class ZDExtort3(LRPlayer):
    """
    An extortionate strategy from Press and Dyson's paper witn an extortion
    factor of 3.

    Names:

    - ZDExtort3: Original name by Marc Harper
    - Unnamed: [Press2012]_
    """

    name = "ZD-Extort3"

    def __init__(self, phi: float = 3 / 26, s: float = 1 / 3, l: float = 1) -> None:
        super().__init__(phi, s, l)



[docs]class ZDExtort4(LRPlayer):
    """
    An Extortionate Zero Determinant Strategy with l=1, s=1/4. TFT is the
    other extreme (with l=3, s=1)


    Names:

    - Extort 4: Original name by Marc Harper
    """

    name = "ZD-Extort-4"

    def __init__(self, phi: float = 4 / 17, s: float = 0.25, l: float = 1) -> None:
        super().__init__(phi, s, l)



[docs]class ZDGen2(LRPlayer):
    """
    A Generous Zero Determinant Strategy with l=3.

    Names:

    - GEN2: [Kuhn2017]_
    """

    name = "ZD-GEN-2"

    def __init__(self, phi: float = 1 / 8, s: float = 0.5, l: float = 3) -> None:
        super().__init__(phi, s, l)



[docs]class ZDGTFT2(LRPlayer):
    """
    A Generous Zero Determinant Strategy with l=R.

    Names:

    - ZDGTFT-2: [Stewart2012]_
    """

    name = "ZD-GTFT-2"

    def __init__(self, phi: float = 0.25, s: float = 0.5) -> None:
        # l = R will be set by receive_match_attributes
        super().__init__(phi, s, None)

[docs]    def receive_match_attributes(self):
        (R, P, S, T) = self.match_attributes["game"].RPST()
        self.l = R
        super().receive_match_attributes()




[docs]class ZDMischief(LRPlayer):
    """
    An example ZD Mischief player.

    Names:

    - ZDMischief: [Roemheld2013]_
    """

    name = "ZD-Mischief"

    def __init__(self, phi: float = 0.1, s: float = 0.0, l: float = 1) -> None:
        super().__init__(phi, s, l)



[docs]class ZDSet2(LRPlayer):
    """
    A Generous Zero Determinant Strategy with l=2.

    Names:

    - SET2: [Kuhn2017]_
    """

    name = "ZD-SET-2"

    def __init__(self, phi: float = 1 / 4, s: float = 0.0, l: float = 2) -> None:
        super().__init__(phi, s, l)
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