Source code for axelrod.strategies.hmm

from axelrod.action import Action
from axelrod.player import Player
from axelrod.random_ import random_choice
from numpy.random import choice

C, D = Action.C, Action.D

# Type Hinting has not finished yet
# Lines 9 and 10 will be deleted


[docs]def is_stochastic_matrix(m, ep=1e-8) -> bool: """Checks that the matrix m (a list of lists) is a stochastic matrix.""" for i in range(len(m)): for j in range(len(m[i])): if (m[i][j] < 0) or (m[i][j] > 1): return False s = sum(m[i]) if abs(1.0 - s) > ep: return False return True
[docs]class SimpleHMM(object): """Implementation of a basic Hidden Markov Model. We assume that the transition matrix is conditioned on the opponent's last action, so there are two transition matrices. Emission distributions are stored as Bernoulli probabilities for each state. This is essentially a stochastic FSM. https://en.wikipedia.org/wiki/Hidden_Markov_model """ def __init__( self, transitions_C, transitions_D, emission_probabilities, initial_state ) -> None: """ Params ------ transitions_C and transitions_D are square stochastic matrices: lists of lists with all values in [0, 1] and rows that sum to 1. emission_probabilities is a vector of values in [0, 1] initial_state is an element of range(0, len(emission_probabilities)) """ self.transitions_C = transitions_C self.transitions_D = transitions_D self.emission_probabilities = emission_probabilities self.state = initial_state
[docs] def is_well_formed(self) -> bool: """ Determines if the HMM parameters are well-formed: - Both matrices are stochastic - Emissions probabilities are in [0, 1] - The initial state is valid. """ if not is_stochastic_matrix(self.transitions_C): return False if not is_stochastic_matrix(self.transitions_D): return False for p in self.emission_probabilities: if (p < 0) or (p > 1): return False if self.state not in range(0, len(self.emission_probabilities)): return False return True
def __eq__(self, other: Player) -> bool: """Equality of two HMMs""" check = True for attr in [ "transitions_C", "transitions_D", "emission_probabilities", "state", ]: check = check and getattr(self, attr) == getattr(other, attr) return check
[docs] def move(self, opponent_action: Action) -> Action: """Changes state and computes the response action. Parameters opponent_action: Axelrod.Action The opponent's last action. """ num_states = len(self.emission_probabilities) if opponent_action == C: next_state = choice(num_states, 1, p=self.transitions_C[self.state]) else: next_state = choice(num_states, 1, p=self.transitions_D[self.state]) self.state = next_state[0] p = self.emission_probabilities[self.state] action = random_choice(p) return action
[docs]class HMMPlayer(Player): """ Abstract base class for Hidden Markov Model players. Names - HMM Player: Original name by Marc Harper """ name = "HMM Player" classifier = { "memory_depth": 1, "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def __init__( self, transitions_C=None, transitions_D=None, emission_probabilities=None, initial_state=0, initial_action=C, ) -> None: super().__init__() if not transitions_C: transitions_C = [[1]] transitions_D = [[1]] emission_probabilities = [0.5] # Not stochastic initial_state = 0 self.initial_state = initial_state self.initial_action = initial_action self.hmm = SimpleHMM( transitions_C, transitions_D, emission_probabilities, initial_state ) assert self.hmm.is_well_formed() self.state = self.hmm.state self.classifier["stochastic"] = self.is_stochastic()
[docs] def is_stochastic(self) -> bool: """Determines if the player is stochastic.""" # If the transitions matrices and emission_probabilities are all 0 or 1 # Then the player is stochastic values = set(self.hmm.emission_probabilities) for m in [self.hmm.transitions_C, self.hmm.transitions_D]: for row in m: values.update(row) if not values.issubset({0, 1}): return True return False
[docs] def strategy(self, opponent: Player) -> Action: if len(self.history) == 0: return self.initial_action else: action = self.hmm.move(opponent.history[-1]) # Record the state for testing purposes, this isn't necessary # for the strategy to function self.state = self.hmm.state return action
[docs]class EvolvedHMM5(HMMPlayer): """ An HMM-based player with five hidden states trained with an evolutionary algorithm. Names: - Evolved HMM 5: Original name by Marc Harper """ name = "Evolved HMM 5" classifier = { "memory_depth": 5, "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def __init__(self) -> None: initial_state = 3 initial_action = C t_C = [ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0.631, 0, 0, 0.369, 0], [0.143, 0.018, 0.118, 0, 0.721], ] t_D = [ [0, 1, 0, 0, 0], [0, 0.487, 0.513, 0, 0], [0, 0, 0, 0.590, 0.410], [1, 0, 0, 0, 0], [0, 0.287, 0.456, 0.146, 0.111], ] emissions = [1, 0, 0, 1, 0.111] super().__init__(t_C, t_D, emissions, initial_state, initial_action)